L(s) = 1 | + (1.30 − 0.541i)2-s + (−0.541 + 1.64i)3-s + (1.41 − 1.41i)4-s + (−1.25 + 1.84i)5-s + (0.183 + 2.44i)6-s + 3.29·7-s + (1.08 − 2.61i)8-s + (−2.41 − 1.78i)9-s + (−0.645 + 3.09i)10-s − 2.51i·11-s + (1.56 + 3.09i)12-s − 4.65·13-s + (4.29 − 1.78i)14-s + (−2.35 − 3.07i)15-s − 4i·16-s − 3.69·17-s + ⋯ |
L(s) = 1 | + (0.923 − 0.382i)2-s + (−0.312 + 0.949i)3-s + (0.707 − 0.707i)4-s + (−0.563 + 0.826i)5-s + (0.0748 + 0.997i)6-s + 1.24·7-s + (0.382 − 0.923i)8-s + (−0.804 − 0.593i)9-s + (−0.204 + 0.978i)10-s − 0.759i·11-s + (0.450 + 0.892i)12-s − 1.29·13-s + (1.14 − 0.475i)14-s + (−0.609 − 0.793i)15-s − i·16-s − 0.896·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.259i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.965 - 0.259i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.51367 + 0.199512i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.51367 + 0.199512i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.30 + 0.541i)T \) |
| 3 | \( 1 + (0.541 - 1.64i)T \) |
| 5 | \( 1 + (1.25 - 1.84i)T \) |
good | 7 | \( 1 - 3.29T + 7T^{2} \) |
| 11 | \( 1 + 2.51iT - 11T^{2} \) |
| 13 | \( 1 + 4.65T + 13T^{2} \) |
| 17 | \( 1 + 3.69T + 17T^{2} \) |
| 19 | \( 1 - 0.828T + 19T^{2} \) |
| 23 | \( 1 - 2.61iT - 23T^{2} \) |
| 29 | \( 1 - 6.08T + 29T^{2} \) |
| 31 | \( 1 + 1.17iT - 31T^{2} \) |
| 37 | \( 1 + 1.92T + 37T^{2} \) |
| 41 | \( 1 - 8.59iT - 41T^{2} \) |
| 43 | \( 1 - 6.01iT - 43T^{2} \) |
| 47 | \( 1 + 2.61iT - 47T^{2} \) |
| 53 | \( 1 - 4.59iT - 53T^{2} \) |
| 59 | \( 1 - 2.51iT - 59T^{2} \) |
| 61 | \( 1 + 8.48iT - 61T^{2} \) |
| 67 | \( 1 + 3.29iT - 67T^{2} \) |
| 71 | \( 1 - 7.12T + 71T^{2} \) |
| 73 | \( 1 - 6.58iT - 73T^{2} \) |
| 79 | \( 1 - 16.4iT - 79T^{2} \) |
| 83 | \( 1 - 9.37T + 83T^{2} \) |
| 89 | \( 1 + 5.03iT - 89T^{2} \) |
| 97 | \( 1 + 2.72iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.84708498679447777135025673803, −12.13715191625321046908267293130, −11.35062573991602776134712403822, −10.85866047061292968539487998328, −9.736694185519729921740280487918, −8.042207304822723037877938415520, −6.59885521944234893067007730064, −5.17618412761611156655762021222, −4.26023846643999984491931086043, −2.82304005995032521481622582497,
2.12174215673087104247097525244, 4.55646788193322558451110655672, 5.22426025386522193083965894859, 6.91638926960422020293116211718, 7.72961979167501126242858879964, 8.640897529960947201732920776977, 10.83524102693976651293622939478, 12.05662815796850838539957792052, 12.19516989166445017328410954975, 13.37558729152493185464555047848