L(s) = 1 | + (0.541 − 1.30i)2-s + (1.30 − 1.13i)3-s + (−1.41 − 1.41i)4-s + (−2.10 + 0.765i)5-s + (−0.778 − 2.32i)6-s + 2.27·7-s + (−2.61 + 1.08i)8-s + (0.414 − 2.97i)9-s + (−0.137 + 3.15i)10-s + 4.20i·11-s + (−3.45 − 0.239i)12-s + 3.21·13-s + (1.23 − 2.97i)14-s + (−1.87 + 3.38i)15-s + 4i·16-s + 1.53·17-s + ⋯ |
L(s) = 1 | + (0.382 − 0.923i)2-s + (0.754 − 0.656i)3-s + (−0.707 − 0.707i)4-s + (−0.939 + 0.342i)5-s + (−0.317 − 0.948i)6-s + 0.859·7-s + (−0.923 + 0.382i)8-s + (0.138 − 0.990i)9-s + (−0.0433 + 0.999i)10-s + 1.26i·11-s + (−0.997 − 0.0692i)12-s + 0.891·13-s + (0.328 − 0.794i)14-s + (−0.484 + 0.875i)15-s + i·16-s + 0.371·17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(−0.112+0.993i)Λ(2−s)
Λ(s)=(=(120s/2ΓC(s+1/2)L(s)(−0.112+0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
−0.112+0.993i
|
Analytic conductor: |
0.958204 |
Root analytic conductor: |
0.978879 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :1/2), −0.112+0.993i)
|
Particular Values
L(1) |
≈ |
0.902873−1.01073i |
L(21) |
≈ |
0.902873−1.01073i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.541+1.30i)T |
| 3 | 1+(−1.30+1.13i)T |
| 5 | 1+(2.10−0.765i)T |
good | 7 | 1−2.27T+7T2 |
| 11 | 1−4.20iT−11T2 |
| 13 | 1−3.21T+13T2 |
| 17 | 1−1.53T+17T2 |
| 19 | 1+4.82T+19T2 |
| 23 | 1+1.08iT−23T2 |
| 29 | 1+1.74T+29T2 |
| 31 | 1−6.82iT−31T2 |
| 37 | 1+7.76T+37T2 |
| 41 | 1+2.46iT−41T2 |
| 43 | 1−8.70iT−43T2 |
| 47 | 1−1.08iT−47T2 |
| 53 | 1+11.0iT−53T2 |
| 59 | 1+4.20iT−59T2 |
| 61 | 1+8.48iT−61T2 |
| 67 | 1−2.27iT−67T2 |
| 71 | 1+11.8T+71T2 |
| 73 | 1+4.54iT−73T2 |
| 79 | 1−0.485iT−79T2 |
| 83 | 1−6.94T+83T2 |
| 89 | 1−8.40iT−89T2 |
| 97 | 1+10.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.97216082706330350974783086286, −12.27362537179254073488571612798, −11.34142946486021755352006694622, −10.29893566510207950517566437808, −8.843976315282772390421537538892, −7.982847446017719924934080919433, −6.66019287383440306153192978620, −4.65946841741135282302873134696, −3.46866357297740168708394365089, −1.82041611211165762078027645365,
3.48502519311608542932796251612, 4.41687383026674587875445185159, 5.72492333139314635187667247031, 7.52931602237207382503055771970, 8.431243802206786016026014049385, 8.867759310216032457774283179868, 10.71329372075851512599534327716, 11.72680862671100206244647533593, 13.15249246524076402143237062309, 13.94802213075734169727285895460