L(s) = 1 | + (−2.80 − 0.363i)2-s + (3.73 + 3.61i)3-s + (7.73 + 2.03i)4-s + (−2.66 − 10.8i)5-s + (−9.15 − 11.4i)6-s − 26.3·7-s + (−20.9 − 8.53i)8-s + (0.853 + 26.9i)9-s + (3.52 + 31.4i)10-s − 37.4i·11-s + (21.4 + 35.5i)12-s − 30.8·13-s + (73.8 + 9.57i)14-s + (29.3 − 50.1i)15-s + (55.6 + 31.5i)16-s − 54.0·17-s + ⋯ |
L(s) = 1 | + (−0.991 − 0.128i)2-s + (0.718 + 0.695i)3-s + (0.966 + 0.254i)4-s + (−0.238 − 0.971i)5-s + (−0.622 − 0.782i)6-s − 1.42·7-s + (−0.926 − 0.377i)8-s + (0.0315 + 0.999i)9-s + (0.111 + 0.993i)10-s − 1.02i·11-s + (0.517 + 0.855i)12-s − 0.658·13-s + (1.41 + 0.182i)14-s + (0.504 − 0.863i)15-s + (0.869 + 0.493i)16-s − 0.770·17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(−0.793+0.609i)Λ(4−s)
Λ(s)=(=(120s/2ΓC(s+3/2)L(s)(−0.793+0.609i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
−0.793+0.609i
|
Analytic conductor: |
7.08022 |
Root analytic conductor: |
2.66087 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :3/2), −0.793+0.609i)
|
Particular Values
L(2) |
≈ |
0.107287−0.315801i |
L(21) |
≈ |
0.107287−0.315801i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2.80+0.363i)T |
| 3 | 1+(−3.73−3.61i)T |
| 5 | 1+(2.66+10.8i)T |
good | 7 | 1+26.3T+343T2 |
| 11 | 1+37.4iT−1.33e3T2 |
| 13 | 1+30.8T+2.19e3T2 |
| 17 | 1+54.0T+4.91e3T2 |
| 19 | 1+4.70T+6.85e3T2 |
| 23 | 1+129.iT−1.21e4T2 |
| 29 | 1+230.T+2.43e4T2 |
| 31 | 1+123.iT−2.97e4T2 |
| 37 | 1−349.T+5.06e4T2 |
| 41 | 1+74.8iT−6.89e4T2 |
| 43 | 1+364.iT−7.95e4T2 |
| 47 | 1−45.7iT−1.03e5T2 |
| 53 | 1−682.iT−1.48e5T2 |
| 59 | 1+256.iT−2.05e5T2 |
| 61 | 1−435.iT−2.26e5T2 |
| 67 | 1−862.iT−3.00e5T2 |
| 71 | 1+366.T+3.57e5T2 |
| 73 | 1−215.iT−3.89e5T2 |
| 79 | 1+340.iT−4.93e5T2 |
| 83 | 1−605.T+5.71e5T2 |
| 89 | 1+517.iT−7.04e5T2 |
| 97 | 1+1.44e3iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.62516453249140173841957261453, −11.28737798667626105595838983620, −10.14704323953590185144443593507, −9.239323801054179372515518876786, −8.694304580940633455214773014814, −7.47738882025109264166447331254, −5.91999431233180023122357052053, −3.99395356469170939105476339018, −2.62162550851288171926658322204, −0.20185989247542140925974150557,
2.19734199452398271760378449969, 3.35949440418777668274287292707, 6.30333512571246476411855801100, 7.04476492639171968270027678413, 7.79639071143960963788572039936, 9.428988937544831428250940994298, 9.781303622328604896882767054128, 11.22997690064226830232576704341, 12.36618863162219233389018709150, 13.30829355614916009717298802764