L(s) = 1 | + (1.39 − 0.250i)2-s + (1.01 + 1.40i)3-s + (1.87 − 0.696i)4-s + (−2.23 + 0.116i)5-s + (1.76 + 1.69i)6-s + (−2.29 − 2.29i)7-s + (2.43 − 1.43i)8-s + (−0.925 + 2.85i)9-s + (−3.07 + 0.720i)10-s − 2.28·11-s + (2.88 + 1.91i)12-s + (1.05 + 1.05i)13-s + (−3.76 − 2.61i)14-s + (−2.43 − 3.00i)15-s + (3.03 − 2.61i)16-s + (3.04 − 3.04i)17-s + ⋯ |
L(s) = 1 | + (0.984 − 0.176i)2-s + (0.588 + 0.808i)3-s + (0.937 − 0.348i)4-s + (−0.998 + 0.0519i)5-s + (0.721 + 0.692i)6-s + (−0.865 − 0.865i)7-s + (0.861 − 0.508i)8-s + (−0.308 + 0.951i)9-s + (−0.973 + 0.227i)10-s − 0.688·11-s + (0.832 + 0.553i)12-s + (0.292 + 0.292i)13-s + (−1.00 − 0.698i)14-s + (−0.629 − 0.777i)15-s + (0.757 − 0.652i)16-s + (0.738 − 0.738i)17-s + ⋯ |
Λ(s)=(=(120s/2ΓC(s)L(s)(0.980−0.195i)Λ(2−s)
Λ(s)=(=(120s/2ΓC(s+1/2)L(s)(0.980−0.195i)Λ(1−s)
Degree: |
2 |
Conductor: |
120
= 23⋅3⋅5
|
Sign: |
0.980−0.195i
|
Analytic conductor: |
0.958204 |
Root analytic conductor: |
0.978879 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ120(77,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 120, ( :1/2), 0.980−0.195i)
|
Particular Values
L(1) |
≈ |
1.73329+0.170982i |
L(21) |
≈ |
1.73329+0.170982i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.39+0.250i)T |
| 3 | 1+(−1.01−1.40i)T |
| 5 | 1+(2.23−0.116i)T |
good | 7 | 1+(2.29+2.29i)T+7iT2 |
| 11 | 1+2.28T+11T2 |
| 13 | 1+(−1.05−1.05i)T+13iT2 |
| 17 | 1+(−3.04+3.04i)T−17iT2 |
| 19 | 1+3.36T+19T2 |
| 23 | 1+(−3.68−3.68i)T+23iT2 |
| 29 | 1−2.71iT−29T2 |
| 31 | 1+6.49T+31T2 |
| 37 | 1+(−2.31+2.31i)T−37iT2 |
| 41 | 1−10.8iT−41T2 |
| 43 | 1+(1.16+1.16i)T+43iT2 |
| 47 | 1+(1.83−1.83i)T−47iT2 |
| 53 | 1+(−5.82+5.82i)T−53iT2 |
| 59 | 1+7.41iT−59T2 |
| 61 | 1−8.97iT−61T2 |
| 67 | 1+(−8.66+8.66i)T−67iT2 |
| 71 | 1+7.37iT−71T2 |
| 73 | 1+(−1.83+1.83i)T−73iT2 |
| 79 | 1−8.28iT−79T2 |
| 83 | 1+(5.27−5.27i)T−83iT2 |
| 89 | 1−11.5T+89T2 |
| 97 | 1+(2.79+2.79i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.49952811692865906718761726837, −12.75230091495172076399976129348, −11.33953921043298250974351354973, −10.62398401980120016245846460735, −9.544880709057562103681074038640, −7.910558127086609728157796719407, −6.92617174673655988098345879685, −5.13278063036350406261352142616, −3.92096075349122477689781910497, −3.09713110015318820756830541090,
2.64982127043694289258862022966, 3.77338372295083905536486703812, 5.64412936629592742128139491280, 6.77583212803665820241976890697, 7.87092181815821649738201924799, 8.768900006681544833093619218259, 10.63643924654515772583486820642, 11.92567997588791401248898200788, 12.68611457031687562516319739614, 13.10833475658546002814765516394