L(s) = 1 | + i·3-s + i·7-s − 9-s + i·13-s − 19-s − 21-s − i·27-s + 31-s + 2i·37-s − 39-s − i·43-s − i·57-s − 61-s − i·63-s + i·67-s + ⋯ |
L(s) = 1 | + i·3-s + i·7-s − 9-s + i·13-s − 19-s − 21-s − i·27-s + 31-s + 2i·37-s − 39-s − i·43-s − i·57-s − 61-s − i·63-s + i·67-s + ⋯ |
Λ(s)=(=(1200s/2ΓC(s)L(s)(−0.447−0.894i)Λ(1−s)
Λ(s)=(=(1200s/2ΓC(s)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1200
= 24⋅3⋅52
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
0.598878 |
Root analytic conductor: |
0.773872 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1200(449,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1200, ( :0), −0.447−0.894i)
|
Particular Values
L(21) |
≈ |
0.9236589007 |
L(21) |
≈ |
0.9236589007 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
| 5 | 1 |
good | 7 | 1−iT−T2 |
| 11 | 1−T2 |
| 13 | 1−iT−T2 |
| 17 | 1+T2 |
| 19 | 1+T+T2 |
| 23 | 1+T2 |
| 29 | 1−T2 |
| 31 | 1−T+T2 |
| 37 | 1−2iT−T2 |
| 41 | 1−T2 |
| 43 | 1+iT−T2 |
| 47 | 1+T2 |
| 53 | 1+T2 |
| 59 | 1−T2 |
| 61 | 1+T+T2 |
| 67 | 1−iT−T2 |
| 71 | 1−T2 |
| 73 | 1+2iT−T2 |
| 79 | 1−2T+T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1+iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16692126896792320217436702249, −9.324223472328552274411279417898, −8.760434694483442977948695514813, −8.076622587861965813696973815329, −6.66021730851117044885065126857, −5.99161771659389753301739223094, −4.96767717499576217254459612318, −4.28823171968519359752415878042, −3.14018841927764738210195200695, −2.10863678667909022249764221974,
0.817156158108819163320116772205, 2.22942052793984426763547218566, 3.36691859714621788828279753969, 4.48280741826464614963215358653, 5.65924444420486887252769112857, 6.44497921649453797621235043873, 7.28822144623843650417256240064, 7.915532844020275280223287750422, 8.637800860934582289020213754342, 9.712988721814415946608443269753