L(s) = 1 | + i·3-s + i·7-s − 9-s + i·13-s − 19-s − 21-s − i·27-s + 31-s + 2i·37-s − 39-s − i·43-s − i·57-s − 61-s − i·63-s + i·67-s + ⋯ |
L(s) = 1 | + i·3-s + i·7-s − 9-s + i·13-s − 19-s − 21-s − i·27-s + 31-s + 2i·37-s − 39-s − i·43-s − i·57-s − 61-s − i·63-s + i·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9236589007\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9236589007\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 - 2iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 2iT - T^{2} \) |
| 79 | \( 1 - 2T + T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16692126896792320217436702249, −9.324223472328552274411279417898, −8.760434694483442977948695514813, −8.076622587861965813696973815329, −6.66021730851117044885065126857, −5.99161771659389753301739223094, −4.96767717499576217254459612318, −4.28823171968519359752415878042, −3.14018841927764738210195200695, −2.10863678667909022249764221974,
0.817156158108819163320116772205, 2.22942052793984426763547218566, 3.36691859714621788828279753969, 4.48280741826464614963215358653, 5.65924444420486887252769112857, 6.44497921649453797621235043873, 7.28822144623843650417256240064, 7.915532844020275280223287750422, 8.637800860934582289020213754342, 9.712988721814415946608443269753