L(s) = 1 | + 2-s − i·3-s + 4-s − i·6-s + 8-s − 9-s − i·12-s + 16-s + (1 − i)17-s − 18-s + (−1 + i)19-s + (−1 − i)23-s − i·24-s + i·27-s + 2i·31-s + 32-s + ⋯ |
L(s) = 1 | + 2-s − i·3-s + 4-s − i·6-s + 8-s − 9-s − i·12-s + 16-s + (1 − i)17-s − 18-s + (−1 + i)19-s + (−1 − i)23-s − i·24-s + i·27-s + 2i·31-s + 32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 + 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.584 + 0.811i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.910556555\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.910556555\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-1 + i)T - iT^{2} \) |
| 19 | \( 1 + (1 - i)T - iT^{2} \) |
| 23 | \( 1 + (1 + i)T + iT^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 - 2iT - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (1 + i)T + iT^{2} \) |
| 53 | \( 1 - 2iT - T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (1 - i)T - iT^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13611474036246154783996907708, −8.718697627778569301825632389079, −7.961204125518065708202594658870, −7.17695853182858015602995782105, −6.41779075784429779804635795656, −5.70018132663773805848785583327, −4.78289035010519154174425609022, −3.56545086274853630540864278132, −2.61251717099937078186702596128, −1.51535550607365298497186594261,
2.06674253838762747478721304463, 3.26610426994334539109150757663, 4.03576538935355803687547720536, 4.80249613123877603875270769552, 5.80543424145095602332606157655, 6.30469639710358608934824143621, 7.65193474867595104056893578937, 8.310671124963649093714141099915, 9.546246945455479574045541639142, 10.10929004588547097289150736967