Properties

Label 2-1200-60.23-c0-0-2
Degree $2$
Conductor $1200$
Sign $0.923 + 0.382i$
Analytic cond. $0.598878$
Root an. cond. $0.773872$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s − 1.00i·9-s + (1.22 + 1.22i)13-s − 1.73·19-s + 1.00·21-s + (−0.707 − 0.707i)27-s − 1.73i·31-s + 1.73·39-s + (−0.707 + 0.707i)43-s + (−1.22 + 1.22i)57-s − 61-s + (0.707 − 0.707i)63-s + (−0.707 − 0.707i)67-s − 1.00·81-s + ⋯
L(s)  = 1  + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s − 1.00i·9-s + (1.22 + 1.22i)13-s − 1.73·19-s + 1.00·21-s + (−0.707 − 0.707i)27-s − 1.73i·31-s + 1.73·39-s + (−0.707 + 0.707i)43-s + (−1.22 + 1.22i)57-s − 61-s + (0.707 − 0.707i)63-s + (−0.707 − 0.707i)67-s − 1.00·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1200\)    =    \(2^{4} \cdot 3 \cdot 5^{2}\)
Sign: $0.923 + 0.382i$
Analytic conductor: \(0.598878\)
Root analytic conductor: \(0.773872\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1200} (143, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1200,\ (\ :0),\ 0.923 + 0.382i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.425262402\)
\(L(\frac12)\) \(\approx\) \(1.425262402\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-0.707 + 0.707i)T \)
5 \( 1 \)
good7 \( 1 + (-0.707 - 0.707i)T + iT^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + (-1.22 - 1.22i)T + iT^{2} \)
17 \( 1 + iT^{2} \)
19 \( 1 + 1.73T + T^{2} \)
23 \( 1 + iT^{2} \)
29 \( 1 + T^{2} \)
31 \( 1 + 1.73iT - T^{2} \)
37 \( 1 - iT^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + (0.707 - 0.707i)T - iT^{2} \)
47 \( 1 - iT^{2} \)
53 \( 1 - iT^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + T + T^{2} \)
67 \( 1 + (0.707 + 0.707i)T + iT^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + iT^{2} \)
79 \( 1 + T^{2} \)
83 \( 1 + iT^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 + (-1.22 + 1.22i)T - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.616820441958502558689855416077, −8.813374709990459824199219602287, −8.422264989579997865737134093847, −7.58503914190711347193697991637, −6.45724699722851222706444411063, −6.04652514503896561254383975070, −4.57857467231428930620567692770, −3.73483921743346343209832230530, −2.36489843690771134487902723627, −1.63706512570907164309288813831, 1.59523592017145420401827546357, 2.99361070775509986676520892073, 3.89276714175002455734770705118, 4.67662173711173281959677255772, 5.63812588286002796356369480464, 6.76882675492295709098418841521, 7.84596027834239965806247751179, 8.415464569118885580803494365794, 8.976464430712597153367767603591, 10.27697434287880058642552078185

Graph of the $Z$-function along the critical line