L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s − 1.00i·9-s + (1.22 + 1.22i)13-s − 1.73·19-s + 1.00·21-s + (−0.707 − 0.707i)27-s − 1.73i·31-s + 1.73·39-s + (−0.707 + 0.707i)43-s + (−1.22 + 1.22i)57-s − 61-s + (0.707 − 0.707i)63-s + (−0.707 − 0.707i)67-s − 1.00·81-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s − 1.00i·9-s + (1.22 + 1.22i)13-s − 1.73·19-s + 1.00·21-s + (−0.707 − 0.707i)27-s − 1.73i·31-s + 1.73·39-s + (−0.707 + 0.707i)43-s + (−1.22 + 1.22i)57-s − 61-s + (0.707 − 0.707i)63-s + (−0.707 − 0.707i)67-s − 1.00·81-s + ⋯ |
Λ(s)=(=(1200s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Λ(s)=(=(1200s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
1200
= 24⋅3⋅52
|
Sign: |
0.923+0.382i
|
Analytic conductor: |
0.598878 |
Root analytic conductor: |
0.773872 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1200(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1200, ( :0), 0.923+0.382i)
|
Particular Values
L(21) |
≈ |
1.425262402 |
L(21) |
≈ |
1.425262402 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.707+0.707i)T |
| 5 | 1 |
good | 7 | 1+(−0.707−0.707i)T+iT2 |
| 11 | 1+T2 |
| 13 | 1+(−1.22−1.22i)T+iT2 |
| 17 | 1+iT2 |
| 19 | 1+1.73T+T2 |
| 23 | 1+iT2 |
| 29 | 1+T2 |
| 31 | 1+1.73iT−T2 |
| 37 | 1−iT2 |
| 41 | 1−T2 |
| 43 | 1+(0.707−0.707i)T−iT2 |
| 47 | 1−iT2 |
| 53 | 1−iT2 |
| 59 | 1−T2 |
| 61 | 1+T+T2 |
| 67 | 1+(0.707+0.707i)T+iT2 |
| 71 | 1+T2 |
| 73 | 1+iT2 |
| 79 | 1+T2 |
| 83 | 1+iT2 |
| 89 | 1+T2 |
| 97 | 1+(−1.22+1.22i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.616820441958502558689855416077, −8.813374709990459824199219602287, −8.422264989579997865737134093847, −7.58503914190711347193697991637, −6.45724699722851222706444411063, −6.04652514503896561254383975070, −4.57857467231428930620567692770, −3.73483921743346343209832230530, −2.36489843690771134487902723627, −1.63706512570907164309288813831,
1.59523592017145420401827546357, 2.99361070775509986676520892073, 3.89276714175002455734770705118, 4.67662173711173281959677255772, 5.63812588286002796356369480464, 6.76882675492295709098418841521, 7.84596027834239965806247751179, 8.415464569118885580803494365794, 8.976464430712597153367767603591, 10.27697434287880058642552078185