L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s − 1.00i·9-s + (1.22 + 1.22i)13-s − 1.73·19-s + 1.00·21-s + (−0.707 − 0.707i)27-s − 1.73i·31-s + 1.73·39-s + (−0.707 + 0.707i)43-s + (−1.22 + 1.22i)57-s − 61-s + (0.707 − 0.707i)63-s + (−0.707 − 0.707i)67-s − 1.00·81-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)3-s + (0.707 + 0.707i)7-s − 1.00i·9-s + (1.22 + 1.22i)13-s − 1.73·19-s + 1.00·21-s + (−0.707 − 0.707i)27-s − 1.73i·31-s + 1.73·39-s + (−0.707 + 0.707i)43-s + (−1.22 + 1.22i)57-s − 61-s + (0.707 − 0.707i)63-s + (−0.707 − 0.707i)67-s − 1.00·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.425262402\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.425262402\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 17 | \( 1 + iT^{2} \) |
| 19 | \( 1 + 1.73T + T^{2} \) |
| 23 | \( 1 + iT^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + 1.73iT - T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-1.22 + 1.22i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.616820441958502558689855416077, −8.813374709990459824199219602287, −8.422264989579997865737134093847, −7.58503914190711347193697991637, −6.45724699722851222706444411063, −6.04652514503896561254383975070, −4.57857467231428930620567692770, −3.73483921743346343209832230530, −2.36489843690771134487902723627, −1.63706512570907164309288813831,
1.59523592017145420401827546357, 2.99361070775509986676520892073, 3.89276714175002455734770705118, 4.67662173711173281959677255772, 5.63812588286002796356369480464, 6.76882675492295709098418841521, 7.84596027834239965806247751179, 8.415464569118885580803494365794, 8.976464430712597153367767603591, 10.27697434287880058642552078185