L(s) = 1 | − 1.34·3-s + 3.97·5-s + 7·7-s − 25.2·9-s + 11·11-s + 26.5·13-s − 5.33·15-s − 90.7·17-s + 68.4·19-s − 9.39·21-s + 36.3·23-s − 109.·25-s + 70.0·27-s + 176.·29-s − 177.·31-s − 14.7·33-s + 27.8·35-s − 299.·37-s − 35.6·39-s − 45.3·41-s + 528.·43-s − 100.·45-s − 357.·47-s + 49·49-s + 121.·51-s − 742.·53-s + 43.7·55-s + ⋯ |
L(s) = 1 | − 0.258·3-s + 0.355·5-s + 0.377·7-s − 0.933·9-s + 0.301·11-s + 0.566·13-s − 0.0918·15-s − 1.29·17-s + 0.825·19-s − 0.0975·21-s + 0.329·23-s − 0.873·25-s + 0.499·27-s + 1.12·29-s − 1.02·31-s − 0.0778·33-s + 0.134·35-s − 1.32·37-s − 0.146·39-s − 0.172·41-s + 1.87·43-s − 0.331·45-s − 1.10·47-s + 0.142·49-s + 0.334·51-s − 1.92·53-s + 0.107·55-s + ⋯ |
Λ(s)=(=(1232s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1232s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−7T |
| 11 | 1−11T |
good | 3 | 1+1.34T+27T2 |
| 5 | 1−3.97T+125T2 |
| 13 | 1−26.5T+2.19e3T2 |
| 17 | 1+90.7T+4.91e3T2 |
| 19 | 1−68.4T+6.85e3T2 |
| 23 | 1−36.3T+1.21e4T2 |
| 29 | 1−176.T+2.43e4T2 |
| 31 | 1+177.T+2.97e4T2 |
| 37 | 1+299.T+5.06e4T2 |
| 41 | 1+45.3T+6.89e4T2 |
| 43 | 1−528.T+7.95e4T2 |
| 47 | 1+357.T+1.03e5T2 |
| 53 | 1+742.T+1.48e5T2 |
| 59 | 1−877.T+2.05e5T2 |
| 61 | 1−199.T+2.26e5T2 |
| 67 | 1+998.T+3.00e5T2 |
| 71 | 1−27.8T+3.57e5T2 |
| 73 | 1+161.T+3.89e5T2 |
| 79 | 1−624.T+4.93e5T2 |
| 83 | 1+396.T+5.71e5T2 |
| 89 | 1+1.40e3T+7.04e5T2 |
| 97 | 1+193.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.886503544550114050148766949211, −8.293128098734129805926615470389, −7.20599644483045384026345668609, −6.33472297247191506004952394664, −5.60150641882922079421586460391, −4.75589468995490599786438338057, −3.63902757598236937799495658977, −2.53078046987111218618388731687, −1.39158271378551134143670489421, 0,
1.39158271378551134143670489421, 2.53078046987111218618388731687, 3.63902757598236937799495658977, 4.75589468995490599786438338057, 5.60150641882922079421586460391, 6.33472297247191506004952394664, 7.20599644483045384026345668609, 8.293128098734129805926615470389, 8.886503544550114050148766949211