Properties

Label 2-1254-1.1-c1-0-1
Degree $2$
Conductor $1254$
Sign $1$
Analytic cond. $10.0132$
Root an. cond. $3.16437$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 4·7-s − 8-s + 9-s − 11-s − 12-s + 4·14-s + 16-s − 2·17-s − 18-s + 19-s + 4·21-s + 22-s − 2·23-s + 24-s − 5·25-s − 27-s − 4·28-s + 10·29-s − 2·31-s − 32-s + 33-s + 2·34-s + 36-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.301·11-s − 0.288·12-s + 1.06·14-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 0.229·19-s + 0.872·21-s + 0.213·22-s − 0.417·23-s + 0.204·24-s − 25-s − 0.192·27-s − 0.755·28-s + 1.85·29-s − 0.359·31-s − 0.176·32-s + 0.174·33-s + 0.342·34-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1254\)    =    \(2 \cdot 3 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(10.0132\)
Root analytic conductor: \(3.16437\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1254,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6004091680\)
\(L(\frac12)\) \(\approx\) \(0.6004091680\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
11 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
13 \( 1 + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 2 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 16 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.592472309668874924894894158066, −9.193634537030711191031976589522, −8.015105138192102002303708567947, −7.23133595769312761876945392762, −6.30732794327755624588542937743, −5.92107479072607268909853743268, −4.55784588257165667053773261181, −3.39853786914680186073742917184, −2.33727792920545830526310526613, −0.62791044201569185474029367226, 0.62791044201569185474029367226, 2.33727792920545830526310526613, 3.39853786914680186073742917184, 4.55784588257165667053773261181, 5.92107479072607268909853743268, 6.30732794327755624588542937743, 7.23133595769312761876945392762, 8.015105138192102002303708567947, 9.193634537030711191031976589522, 9.592472309668874924894894158066

Graph of the $Z$-function along the critical line