L(s) = 1 | + 2-s − 3-s + 4-s + 3.18·5-s − 6-s + 0.508·7-s + 8-s + 9-s + 3.18·10-s + 11-s − 12-s + 0.508·14-s − 3.18·15-s + 16-s − 1.18·17-s + 18-s + 19-s + 3.18·20-s − 0.508·21-s + 22-s + 7.36·23-s − 24-s + 5.17·25-s − 27-s + 0.508·28-s − 9.53·29-s − 3.18·30-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.42·5-s − 0.408·6-s + 0.192·7-s + 0.353·8-s + 0.333·9-s + 1.00·10-s + 0.301·11-s − 0.288·12-s + 0.135·14-s − 0.823·15-s + 0.250·16-s − 0.288·17-s + 0.235·18-s + 0.229·19-s + 0.713·20-s − 0.110·21-s + 0.213·22-s + 1.53·23-s − 0.204·24-s + 1.03·25-s − 0.192·27-s + 0.0960·28-s − 1.77·29-s − 0.582·30-s + ⋯ |
Λ(s)=(=(1254s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1254s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.908799160 |
L(21) |
≈ |
2.908799160 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 11 | 1−T |
| 19 | 1−T |
good | 5 | 1−3.18T+5T2 |
| 7 | 1−0.508T+7T2 |
| 13 | 1+13T2 |
| 17 | 1+1.18T+17T2 |
| 23 | 1−7.36T+23T2 |
| 29 | 1+9.53T+29T2 |
| 31 | 1−6.85T+31T2 |
| 37 | 1−4.04T+37T2 |
| 41 | 1+9.74T+41T2 |
| 43 | 1+9.91T+43T2 |
| 47 | 1−11.3T+47T2 |
| 53 | 1+0.129T+53T2 |
| 59 | 1+7.74T+59T2 |
| 61 | 1+7.06T+61T2 |
| 67 | 1−9.56T+67T2 |
| 71 | 1−9.87T+71T2 |
| 73 | 1−16.1T+73T2 |
| 79 | 1−11.1T+79T2 |
| 83 | 1−13.3T+83T2 |
| 89 | 1−6.81T+89T2 |
| 97 | 1+16.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.706204471945465236945291105467, −9.169857456620790870356461027297, −7.925036379224523473736107037620, −6.75764116923399700879048016389, −6.35639502830922980892388477456, −5.32136143288378522937095158200, −4.94286532816259896644578094023, −3.61006116920318506759304408828, −2.37845574161286393790094045573, −1.34864706644503212344032379864,
1.34864706644503212344032379864, 2.37845574161286393790094045573, 3.61006116920318506759304408828, 4.94286532816259896644578094023, 5.32136143288378522937095158200, 6.35639502830922980892388477456, 6.75764116923399700879048016389, 7.925036379224523473736107037620, 9.169857456620790870356461027297, 9.706204471945465236945291105467