Properties

Label 2-1254-1.1-c1-0-13
Degree $2$
Conductor $1254$
Sign $1$
Analytic cond. $10.0132$
Root an. cond. $3.16437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 3.18·5-s − 6-s + 0.508·7-s + 8-s + 9-s + 3.18·10-s + 11-s − 12-s + 0.508·14-s − 3.18·15-s + 16-s − 1.18·17-s + 18-s + 19-s + 3.18·20-s − 0.508·21-s + 22-s + 7.36·23-s − 24-s + 5.17·25-s − 27-s + 0.508·28-s − 9.53·29-s − 3.18·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.42·5-s − 0.408·6-s + 0.192·7-s + 0.353·8-s + 0.333·9-s + 1.00·10-s + 0.301·11-s − 0.288·12-s + 0.135·14-s − 0.823·15-s + 0.250·16-s − 0.288·17-s + 0.235·18-s + 0.229·19-s + 0.713·20-s − 0.110·21-s + 0.213·22-s + 1.53·23-s − 0.204·24-s + 1.03·25-s − 0.192·27-s + 0.0960·28-s − 1.77·29-s − 0.582·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1254\)    =    \(2 \cdot 3 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(10.0132\)
Root analytic conductor: \(3.16437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1254,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.908799160\)
\(L(\frac12)\) \(\approx\) \(2.908799160\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
11 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 - 3.18T + 5T^{2} \)
7 \( 1 - 0.508T + 7T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 + 1.18T + 17T^{2} \)
23 \( 1 - 7.36T + 23T^{2} \)
29 \( 1 + 9.53T + 29T^{2} \)
31 \( 1 - 6.85T + 31T^{2} \)
37 \( 1 - 4.04T + 37T^{2} \)
41 \( 1 + 9.74T + 41T^{2} \)
43 \( 1 + 9.91T + 43T^{2} \)
47 \( 1 - 11.3T + 47T^{2} \)
53 \( 1 + 0.129T + 53T^{2} \)
59 \( 1 + 7.74T + 59T^{2} \)
61 \( 1 + 7.06T + 61T^{2} \)
67 \( 1 - 9.56T + 67T^{2} \)
71 \( 1 - 9.87T + 71T^{2} \)
73 \( 1 - 16.1T + 73T^{2} \)
79 \( 1 - 11.1T + 79T^{2} \)
83 \( 1 - 13.3T + 83T^{2} \)
89 \( 1 - 6.81T + 89T^{2} \)
97 \( 1 + 16.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.706204471945465236945291105467, −9.169857456620790870356461027297, −7.925036379224523473736107037620, −6.75764116923399700879048016389, −6.35639502830922980892388477456, −5.32136143288378522937095158200, −4.94286532816259896644578094023, −3.61006116920318506759304408828, −2.37845574161286393790094045573, −1.34864706644503212344032379864, 1.34864706644503212344032379864, 2.37845574161286393790094045573, 3.61006116920318506759304408828, 4.94286532816259896644578094023, 5.32136143288378522937095158200, 6.35639502830922980892388477456, 6.75764116923399700879048016389, 7.925036379224523473736107037620, 9.169857456620790870356461027297, 9.706204471945465236945291105467

Graph of the $Z$-function along the critical line