Properties

Label 2-1254-1.1-c1-0-9
Degree $2$
Conductor $1254$
Sign $1$
Analytic cond. $10.0132$
Root an. cond. $3.16437$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 3.23·5-s + 6-s + 2·7-s + 8-s + 9-s − 3.23·10-s − 11-s + 12-s + 0.763·13-s + 2·14-s − 3.23·15-s + 16-s + 4.47·17-s + 18-s + 19-s − 3.23·20-s + 2·21-s − 22-s + 7.70·23-s + 24-s + 5.47·25-s + 0.763·26-s + 27-s + 2·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 0.5·4-s − 1.44·5-s + 0.408·6-s + 0.755·7-s + 0.353·8-s + 0.333·9-s − 1.02·10-s − 0.301·11-s + 0.288·12-s + 0.211·13-s + 0.534·14-s − 0.835·15-s + 0.250·16-s + 1.08·17-s + 0.235·18-s + 0.229·19-s − 0.723·20-s + 0.436·21-s − 0.213·22-s + 1.60·23-s + 0.204·24-s + 1.09·25-s + 0.149·26-s + 0.192·27-s + 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1254\)    =    \(2 \cdot 3 \cdot 11 \cdot 19\)
Sign: $1$
Analytic conductor: \(10.0132\)
Root analytic conductor: \(3.16437\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1254,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.812051325\)
\(L(\frac12)\) \(\approx\) \(2.812051325\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - T \)
11 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 + 3.23T + 5T^{2} \)
7 \( 1 - 2T + 7T^{2} \)
13 \( 1 - 0.763T + 13T^{2} \)
17 \( 1 - 4.47T + 17T^{2} \)
23 \( 1 - 7.70T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 7.23T + 31T^{2} \)
37 \( 1 - 5.23T + 37T^{2} \)
41 \( 1 + 3.52T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 7.70T + 47T^{2} \)
53 \( 1 + 8.94T + 53T^{2} \)
59 \( 1 + 2.47T + 59T^{2} \)
61 \( 1 - 4T + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 + 12.4T + 71T^{2} \)
73 \( 1 - 10.9T + 73T^{2} \)
79 \( 1 + 9.23T + 79T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 - 10.9T + 89T^{2} \)
97 \( 1 - 10.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.728869631079103147539874899268, −8.540553645059729523992104427175, −7.961979839717142258750964307095, −7.44106196520399250966194683031, −6.46500892459673180295756569395, −5.09985948165748119112158820363, −4.54651272707773043293834808348, −3.51536257709699716727703330746, −2.85717303269076822508916571979, −1.20462983542259946438258617303, 1.20462983542259946438258617303, 2.85717303269076822508916571979, 3.51536257709699716727703330746, 4.54651272707773043293834808348, 5.09985948165748119112158820363, 6.46500892459673180295756569395, 7.44106196520399250966194683031, 7.961979839717142258750964307095, 8.540553645059729523992104427175, 9.728869631079103147539874899268

Graph of the $Z$-function along the critical line