L(s) = 1 | + 2-s + 3-s + 4-s − 3.23·5-s + 6-s + 2·7-s + 8-s + 9-s − 3.23·10-s − 11-s + 12-s + 0.763·13-s + 2·14-s − 3.23·15-s + 16-s + 4.47·17-s + 18-s + 19-s − 3.23·20-s + 2·21-s − 22-s + 7.70·23-s + 24-s + 5.47·25-s + 0.763·26-s + 27-s + 2·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 0.5·4-s − 1.44·5-s + 0.408·6-s + 0.755·7-s + 0.353·8-s + 0.333·9-s − 1.02·10-s − 0.301·11-s + 0.288·12-s + 0.211·13-s + 0.534·14-s − 0.835·15-s + 0.250·16-s + 1.08·17-s + 0.235·18-s + 0.229·19-s − 0.723·20-s + 0.436·21-s − 0.213·22-s + 1.60·23-s + 0.204·24-s + 1.09·25-s + 0.149·26-s + 0.192·27-s + 0.377·28-s + ⋯ |
Λ(s)=(=(1254s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1254s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.812051325 |
L(21) |
≈ |
2.812051325 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1−T |
| 11 | 1+T |
| 19 | 1−T |
good | 5 | 1+3.23T+5T2 |
| 7 | 1−2T+7T2 |
| 13 | 1−0.763T+13T2 |
| 17 | 1−4.47T+17T2 |
| 23 | 1−7.70T+23T2 |
| 29 | 1−2T+29T2 |
| 31 | 1−7.23T+31T2 |
| 37 | 1−5.23T+37T2 |
| 41 | 1+3.52T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+7.70T+47T2 |
| 53 | 1+8.94T+53T2 |
| 59 | 1+2.47T+59T2 |
| 61 | 1−4T+61T2 |
| 67 | 1−4T+67T2 |
| 71 | 1+12.4T+71T2 |
| 73 | 1−10.9T+73T2 |
| 79 | 1+9.23T+79T2 |
| 83 | 1+4T+83T2 |
| 89 | 1−10.9T+89T2 |
| 97 | 1−10.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.728869631079103147539874899268, −8.540553645059729523992104427175, −7.961979839717142258750964307095, −7.44106196520399250966194683031, −6.46500892459673180295756569395, −5.09985948165748119112158820363, −4.54651272707773043293834808348, −3.51536257709699716727703330746, −2.85717303269076822508916571979, −1.20462983542259946438258617303,
1.20462983542259946438258617303, 2.85717303269076822508916571979, 3.51536257709699716727703330746, 4.54651272707773043293834808348, 5.09985948165748119112158820363, 6.46500892459673180295756569395, 7.44106196520399250966194683031, 7.961979839717142258750964307095, 8.540553645059729523992104427175, 9.728869631079103147539874899268