L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (0.499 + 0.866i)6-s − 7-s − 0.999·8-s + (−0.499 − 0.866i)9-s − 11-s + 0.999·12-s + (2 + 3.46i)13-s + (−0.5 + 0.866i)14-s + (−0.5 + 0.866i)16-s + (1.5 − 2.59i)17-s − 0.999·18-s + (−0.5 + 4.33i)19-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (0.204 + 0.353i)6-s − 0.377·7-s − 0.353·8-s + (−0.166 − 0.288i)9-s − 0.301·11-s + 0.288·12-s + (0.554 + 0.960i)13-s + (−0.133 + 0.231i)14-s + (−0.125 + 0.216i)16-s + (0.363 − 0.630i)17-s − 0.235·18-s + (−0.114 + 0.993i)19-s + ⋯ |
Λ(s)=(=(1254s/2ΓC(s)L(s)(0.813−0.582i)Λ(2−s)
Λ(s)=(=(1254s/2ΓC(s+1/2)L(s)(0.813−0.582i)Λ(1−s)
Degree: |
2 |
Conductor: |
1254
= 2⋅3⋅11⋅19
|
Sign: |
0.813−0.582i
|
Analytic conductor: |
10.0132 |
Root analytic conductor: |
3.16437 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1254(1189,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1254, ( :1/2), 0.813−0.582i)
|
Particular Values
L(1) |
≈ |
1.439306946 |
L(21) |
≈ |
1.439306946 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(0.5−0.866i)T |
| 11 | 1+T |
| 19 | 1+(0.5−4.33i)T |
good | 5 | 1+(−2.5−4.33i)T2 |
| 7 | 1+T+7T2 |
| 13 | 1+(−2−3.46i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−1.5+2.59i)T+(−8.5−14.7i)T2 |
| 23 | 1+(1.5+2.59i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−4.5−7.79i)T+(−14.5+25.1i)T2 |
| 31 | 1−2T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+(3−5.19i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.5+6.06i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−1.5−2.59i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−6−10.3i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−29.5−51.0i)T2 |
| 61 | 1+(−5−8.66i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−2−3.46i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−4.5+7.79i)T+(−35.5−61.4i)T2 |
| 73 | 1+(1−1.73i)T+(−36.5−63.2i)T2 |
| 79 | 1+(4−6.92i)T+(−39.5−68.4i)T2 |
| 83 | 1−6T+83T2 |
| 89 | 1+(3+5.19i)T+(−44.5+77.0i)T2 |
| 97 | 1+(5.5−9.52i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.937615253785856090071833122571, −9.149266971101737756660440138579, −8.425887385706156858017927079795, −7.14704104904295897991657053997, −6.28269199112625360851071597890, −5.41863377542927728609171288729, −4.53736144114000981193898448338, −3.66740614331736106506027672789, −2.74253233876165412333322618281, −1.27075126801111658495873671764,
0.62644032408619753879932427441, 2.44551273958970450907355079014, 3.50799744926839791682923743595, 4.64360159764388942719442269385, 5.59900790549217667417471231787, 6.28025574424133776786204982113, 6.97951230279840894964243277712, 8.077084450076726766986258696292, 8.349909152167721560154844690951, 9.620001934421596755830855360690