L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.436 + 0.756i)5-s + (−0.499 − 0.866i)6-s + 2.30·7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (−0.436 − 0.756i)10-s + 11-s + 0.999·12-s + (−1.83 − 3.17i)13-s + (−1.15 + 1.99i)14-s + (−0.436 − 0.756i)15-s + (−0.5 + 0.866i)16-s + (−2.77 + 4.79i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.195 + 0.338i)5-s + (−0.204 − 0.353i)6-s + 0.870·7-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.138 − 0.239i)10-s + 0.301·11-s + 0.288·12-s + (−0.508 − 0.881i)13-s + (−0.307 + 0.533i)14-s + (−0.112 − 0.195i)15-s + (−0.125 + 0.216i)16-s + (−0.672 + 1.16i)17-s + ⋯ |
Λ(s)=(=(1254s/2ΓC(s)L(s)(−0.476−0.879i)Λ(2−s)
Λ(s)=(=(1254s/2ΓC(s+1/2)L(s)(−0.476−0.879i)Λ(1−s)
Degree: |
2 |
Conductor: |
1254
= 2⋅3⋅11⋅19
|
Sign: |
−0.476−0.879i
|
Analytic conductor: |
10.0132 |
Root analytic conductor: |
3.16437 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1254(1189,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1254, ( :1/2), −0.476−0.879i)
|
Particular Values
L(1) |
≈ |
1.166871814 |
L(21) |
≈ |
1.166871814 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1+(0.5−0.866i)T |
| 11 | 1−T |
| 19 | 1+(−4.23−1.03i)T |
good | 5 | 1+(0.436−0.756i)T+(−2.5−4.33i)T2 |
| 7 | 1−2.30T+7T2 |
| 13 | 1+(1.83+3.17i)T+(−6.5+11.2i)T2 |
| 17 | 1+(2.77−4.79i)T+(−8.5−14.7i)T2 |
| 23 | 1+(1.89+3.28i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−4.41−7.64i)T+(−14.5+25.1i)T2 |
| 31 | 1−8.71T+31T2 |
| 37 | 1+1.49T+37T2 |
| 41 | 1+(−2.77+4.81i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−0.0634+0.109i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−2.22−3.86i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.29−2.24i)T+(−26.5+45.8i)T2 |
| 59 | 1+(4.15−7.19i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.391−0.678i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.16+3.75i)T+(−33.5+58.0i)T2 |
| 71 | 1+(5.79−10.0i)T+(−35.5−61.4i)T2 |
| 73 | 1+(1.30−2.25i)T+(−36.5−63.2i)T2 |
| 79 | 1+(7.77−13.4i)T+(−39.5−68.4i)T2 |
| 83 | 1+10.2T+83T2 |
| 89 | 1+(−4.69−8.13i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−3.84+6.66i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.12063570514000795019106736738, −8.968221857763368764727459873110, −8.359325808176145017148844365715, −7.55691901498429020810210695536, −6.70655034655967476274109250096, −5.77428367192249785784222976488, −4.96859012034291835806392943369, −4.15551674622343546962835983254, −2.88208773520331954159130395024, −1.23333601510744407328375194367,
0.67395903588777072062469894108, 1.86493820082782345531524465689, 2.88593477479503770510195898043, 4.48958876521336589694027345140, 4.80256821665096209033630333578, 6.18971431954536265152756735952, 7.15206159043781804287333645758, 7.87003326948656080697466217077, 8.632685003938375102203008159525, 9.467318284915433496960246118871