L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s + (−0.436 + 0.756i)5-s + (−0.499 − 0.866i)6-s + 2.30·7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (−0.436 − 0.756i)10-s + 11-s + 0.999·12-s + (−1.83 − 3.17i)13-s + (−1.15 + 1.99i)14-s + (−0.436 − 0.756i)15-s + (−0.5 + 0.866i)16-s + (−2.77 + 4.79i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.195 + 0.338i)5-s + (−0.204 − 0.353i)6-s + 0.870·7-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.138 − 0.239i)10-s + 0.301·11-s + 0.288·12-s + (−0.508 − 0.881i)13-s + (−0.307 + 0.533i)14-s + (−0.112 − 0.195i)15-s + (−0.125 + 0.216i)16-s + (−0.672 + 1.16i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.476 - 0.879i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.476 - 0.879i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.166871814\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.166871814\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 11 | \( 1 - T \) |
| 19 | \( 1 + (-4.23 - 1.03i)T \) |
good | 5 | \( 1 + (0.436 - 0.756i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 2.30T + 7T^{2} \) |
| 13 | \( 1 + (1.83 + 3.17i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.77 - 4.79i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (1.89 + 3.28i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.41 - 7.64i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 8.71T + 31T^{2} \) |
| 37 | \( 1 + 1.49T + 37T^{2} \) |
| 41 | \( 1 + (-2.77 + 4.81i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.0634 + 0.109i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.22 - 3.86i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.29 - 2.24i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.15 - 7.19i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.391 - 0.678i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.16 + 3.75i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.79 - 10.0i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.30 - 2.25i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.77 - 13.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 10.2T + 83T^{2} \) |
| 89 | \( 1 + (-4.69 - 8.13i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.84 + 6.66i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12063570514000795019106736738, −8.968221857763368764727459873110, −8.359325808176145017148844365715, −7.55691901498429020810210695536, −6.70655034655967476274109250096, −5.77428367192249785784222976488, −4.96859012034291835806392943369, −4.15551674622343546962835983254, −2.88208773520331954159130395024, −1.23333601510744407328375194367,
0.67395903588777072062469894108, 1.86493820082782345531524465689, 2.88593477479503770510195898043, 4.48958876521336589694027345140, 4.80256821665096209033630333578, 6.18971431954536265152756735952, 7.15206159043781804287333645758, 7.87003326948656080697466217077, 8.632685003938375102203008159525, 9.467318284915433496960246118871