L(s) = 1 | + (0.5 − 0.866i)2-s + (0.866 + 0.5i)3-s + (−0.499 − 0.866i)4-s + (−0.704 + 1.22i)5-s + (0.866 − 0.499i)6-s − 1.83i·7-s − 0.999·8-s + (0.499 + 0.866i)9-s + (0.704 + 1.22i)10-s + (−2.01 + 2.63i)11-s − 0.999i·12-s + (2.83 + 4.91i)13-s + (−1.58 − 0.915i)14-s + (−1.22 + 0.704i)15-s + (−0.5 + 0.866i)16-s + (2.61 + 1.51i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.499 + 0.288i)3-s + (−0.249 − 0.433i)4-s + (−0.315 + 0.545i)5-s + (0.353 − 0.204i)6-s − 0.692i·7-s − 0.353·8-s + (0.166 + 0.288i)9-s + (0.222 + 0.385i)10-s + (−0.606 + 0.794i)11-s − 0.288i·12-s + (0.786 + 1.36i)13-s + (−0.423 − 0.244i)14-s + (−0.315 + 0.181i)15-s + (−0.125 + 0.216i)16-s + (0.634 + 0.366i)17-s + ⋯ |
Λ(s)=(=(1254s/2ΓC(s)L(s)(0.841−0.540i)Λ(2−s)
Λ(s)=(=(1254s/2ΓC(s+1/2)L(s)(0.841−0.540i)Λ(1−s)
Degree: |
2 |
Conductor: |
1254
= 2⋅3⋅11⋅19
|
Sign: |
0.841−0.540i
|
Analytic conductor: |
10.0132 |
Root analytic conductor: |
3.16437 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1254(901,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1254, ( :1/2), 0.841−0.540i)
|
Particular Values
L(1) |
≈ |
1.994043793 |
L(21) |
≈ |
1.994043793 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+(−0.866−0.5i)T |
| 11 | 1+(2.01−2.63i)T |
| 19 | 1+(−0.339−4.34i)T |
good | 5 | 1+(0.704−1.22i)T+(−2.5−4.33i)T2 |
| 7 | 1+1.83iT−7T2 |
| 13 | 1+(−2.83−4.91i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−2.61−1.51i)T+(8.5+14.7i)T2 |
| 23 | 1+(4.52+7.84i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.59−4.48i)T+(−14.5+25.1i)T2 |
| 31 | 1−7.54iT−31T2 |
| 37 | 1+3.85iT−37T2 |
| 41 | 1+(−4.68+8.11i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.31+0.758i)T+(21.5+37.2i)T2 |
| 47 | 1+(−3.82−6.62i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−8.05+4.64i)T+(26.5−45.8i)T2 |
| 59 | 1+(5.58+3.22i)T+(29.5+51.0i)T2 |
| 61 | 1+(1.55−0.896i)T+(30.5−52.8i)T2 |
| 67 | 1+(−1.64+0.949i)T+(33.5−58.0i)T2 |
| 71 | 1+(7.63+4.40i)T+(35.5+61.4i)T2 |
| 73 | 1+(−12.3−7.10i)T+(36.5+63.2i)T2 |
| 79 | 1+(6.73−11.6i)T+(−39.5−68.4i)T2 |
| 83 | 1−7.43iT−83T2 |
| 89 | 1+(14.6−8.48i)T+(44.5−77.0i)T2 |
| 97 | 1+(1.45+0.840i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.05269553546613801552267121495, −9.039446105839490070473441930302, −8.250080726141682270201511911689, −7.26792936330891308720577051122, −6.56406843684995831775325230670, −5.34229122160726388069668504163, −4.17427275256211763743618503404, −3.81762661448249570383311795630, −2.63442305991333540898123380211, −1.51849072068360904255490633974,
0.74728100737046351657581015340, 2.63179031269754108773338433062, 3.40381814772007513259447951036, 4.55282024211947431600824140395, 5.70506167281648831275020611649, 5.94641795377485598276108776111, 7.41141771948535847522641614310, 8.034995206096461889093340628951, 8.497632892922709367942619702861, 9.354030871006197746466188006846