L(s) = 1 | + (0.5 − 0.866i)2-s + (0.866 + 0.5i)3-s + (−0.499 − 0.866i)4-s + (−0.704 + 1.22i)5-s + (0.866 − 0.499i)6-s − 1.83i·7-s − 0.999·8-s + (0.499 + 0.866i)9-s + (0.704 + 1.22i)10-s + (−2.01 + 2.63i)11-s − 0.999i·12-s + (2.83 + 4.91i)13-s + (−1.58 − 0.915i)14-s + (−1.22 + 0.704i)15-s + (−0.5 + 0.866i)16-s + (2.61 + 1.51i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.499 + 0.288i)3-s + (−0.249 − 0.433i)4-s + (−0.315 + 0.545i)5-s + (0.353 − 0.204i)6-s − 0.692i·7-s − 0.353·8-s + (0.166 + 0.288i)9-s + (0.222 + 0.385i)10-s + (−0.606 + 0.794i)11-s − 0.288i·12-s + (0.786 + 1.36i)13-s + (−0.423 − 0.244i)14-s + (−0.315 + 0.181i)15-s + (−0.125 + 0.216i)16-s + (0.634 + 0.366i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.841 - 0.540i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.841 - 0.540i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.994043793\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.994043793\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 11 | \( 1 + (2.01 - 2.63i)T \) |
| 19 | \( 1 + (-0.339 - 4.34i)T \) |
good | 5 | \( 1 + (0.704 - 1.22i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 1.83iT - 7T^{2} \) |
| 13 | \( 1 + (-2.83 - 4.91i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.61 - 1.51i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (4.52 + 7.84i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.59 - 4.48i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.54iT - 31T^{2} \) |
| 37 | \( 1 + 3.85iT - 37T^{2} \) |
| 41 | \( 1 + (-4.68 + 8.11i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.31 + 0.758i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.82 - 6.62i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-8.05 + 4.64i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (5.58 + 3.22i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.55 - 0.896i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.64 + 0.949i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (7.63 + 4.40i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-12.3 - 7.10i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.73 - 11.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 7.43iT - 83T^{2} \) |
| 89 | \( 1 + (14.6 - 8.48i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.45 + 0.840i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.05269553546613801552267121495, −9.039446105839490070473441930302, −8.250080726141682270201511911689, −7.26792936330891308720577051122, −6.56406843684995831775325230670, −5.34229122160726388069668504163, −4.17427275256211763743618503404, −3.81762661448249570383311795630, −2.63442305991333540898123380211, −1.51849072068360904255490633974,
0.74728100737046351657581015340, 2.63179031269754108773338433062, 3.40381814772007513259447951036, 4.55282024211947431600824140395, 5.70506167281648831275020611649, 5.94641795377485598276108776111, 7.41141771948535847522641614310, 8.034995206096461889093340628951, 8.497632892922709367942619702861, 9.354030871006197746466188006846