L(s) = 1 | + (1.22 + 0.707i)2-s + (−2.97 + 0.371i)3-s + (0.999 + 1.73i)4-s − 8.56i·5-s + (−3.90 − 1.64i)6-s + (4.01 − 5.73i)7-s + 2.82i·8-s + (8.72 − 2.21i)9-s + (6.05 − 10.4i)10-s + 7.05i·11-s + (−3.62 − 4.78i)12-s + (7.43 − 12.8i)13-s + (8.97 − 4.18i)14-s + (3.18 + 25.4i)15-s + (−2.00 + 3.46i)16-s + (−12.4 − 7.18i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.992 + 0.123i)3-s + (0.249 + 0.433i)4-s − 1.71i·5-s + (−0.651 − 0.274i)6-s + (0.573 − 0.819i)7-s + 0.353i·8-s + (0.969 − 0.245i)9-s + (0.605 − 1.04i)10-s + 0.641i·11-s + (−0.301 − 0.398i)12-s + (0.571 − 0.990i)13-s + (0.640 − 0.298i)14-s + (0.212 + 1.69i)15-s + (−0.125 + 0.216i)16-s + (−0.732 − 0.422i)17-s + ⋯ |
Λ(s)=(=(126s/2ΓC(s)L(s)(0.714+0.699i)Λ(3−s)
Λ(s)=(=(126s/2ΓC(s+1)L(s)(0.714+0.699i)Λ(1−s)
Degree: |
2 |
Conductor: |
126
= 2⋅32⋅7
|
Sign: |
0.714+0.699i
|
Analytic conductor: |
3.43325 |
Root analytic conductor: |
1.85290 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ126(95,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 126, ( :1), 0.714+0.699i)
|
Particular Values
L(23) |
≈ |
1.36888−0.558493i |
L(21) |
≈ |
1.36888−0.558493i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.22−0.707i)T |
| 3 | 1+(2.97−0.371i)T |
| 7 | 1+(−4.01+5.73i)T |
good | 5 | 1+8.56iT−25T2 |
| 11 | 1−7.05iT−121T2 |
| 13 | 1+(−7.43+12.8i)T+(−84.5−146.i)T2 |
| 17 | 1+(12.4+7.18i)T+(144.5+250.i)T2 |
| 19 | 1+(−9.66−16.7i)T+(−180.5+312.i)T2 |
| 23 | 1+39.3iT−529T2 |
| 29 | 1+(11.7−6.80i)T+(420.5−728.i)T2 |
| 31 | 1+(−12.0−20.8i)T+(−480.5+832.i)T2 |
| 37 | 1+(−17.6−30.5i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(−7.79−4.50i)T+(840.5+1.45e3i)T2 |
| 43 | 1+(−32.4−56.2i)T+(−924.5+1.60e3i)T2 |
| 47 | 1+(−28.9−16.6i)T+(1.10e3+1.91e3i)T2 |
| 53 | 1+(−52.4−30.2i)T+(1.40e3+2.43e3i)T2 |
| 59 | 1+(62.6−36.1i)T+(1.74e3−3.01e3i)T2 |
| 61 | 1+(−3.99+6.91i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−41.8−72.4i)T+(−2.24e3+3.88e3i)T2 |
| 71 | 1+61.0iT−5.04e3T2 |
| 73 | 1+(9.83−17.0i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(−5.09+8.82i)T+(−3.12e3−5.40e3i)T2 |
| 83 | 1+(−15.8+9.15i)T+(3.44e3−5.96e3i)T2 |
| 89 | 1+(40.0−23.1i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(49.1+85.1i)T+(−4.70e3+8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.79931684698348193201809758737, −12.32446245054543953597406368564, −11.15439312928044761680322391456, −10.03775671315888042179308187997, −8.562894345754972877089413259801, −7.47998545251227795980294746690, −6.00966672174142014502513408449, −4.86991588381691882154501112322, −4.30236515473478709739661559302, −1.05861427945241083459247731185,
2.18301542618570927895562844812, 3.86367861381910705725530066262, 5.54634462409805606387295749554, 6.38677222243108101045271158029, 7.40732850669595698015930423675, 9.346951332945848526693499131445, 10.77153653273469338678598094478, 11.30415002070760890947208681400, 11.79793715259879522570290088743, 13.35842981852306864682135232397