L(s) = 1 | + (1.95 + 1.08i)5-s + (2.37 + 1.16i)7-s − 3.74i·11-s + 0.841·13-s − 3.36i·17-s − 4.55i·19-s + 7.64·23-s + (2.64 + 4.24i)25-s − 1.41i·29-s + 0.979i·31-s + (3.38 + 4.85i)35-s + 2.32i·37-s − 10.3·41-s + 10.8i·43-s − 7.91i·47-s + ⋯ |
L(s) = 1 | + (0.874 + 0.485i)5-s + (0.898 + 0.439i)7-s − 1.12i·11-s + 0.233·13-s − 0.814i·17-s − 1.04i·19-s + 1.59·23-s + (0.529 + 0.848i)25-s − 0.262i·29-s + 0.175i·31-s + (0.571 + 0.820i)35-s + 0.382i·37-s − 1.61·41-s + 1.64i·43-s − 1.15i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00670i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.00670i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.221354635\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.221354635\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.95 - 1.08i)T \) |
| 7 | \( 1 + (-2.37 - 1.16i)T \) |
good | 11 | \( 1 + 3.74iT - 11T^{2} \) |
| 13 | \( 1 - 0.841T + 13T^{2} \) |
| 17 | \( 1 + 3.36iT - 17T^{2} \) |
| 19 | \( 1 + 4.55iT - 19T^{2} \) |
| 23 | \( 1 - 7.64T + 23T^{2} \) |
| 29 | \( 1 + 1.41iT - 29T^{2} \) |
| 31 | \( 1 - 0.979iT - 31T^{2} \) |
| 37 | \( 1 - 2.32iT - 37T^{2} \) |
| 41 | \( 1 + 10.3T + 41T^{2} \) |
| 43 | \( 1 - 10.8iT - 43T^{2} \) |
| 47 | \( 1 + 7.91iT - 47T^{2} \) |
| 53 | \( 1 + 4.35T + 53T^{2} \) |
| 59 | \( 1 - 1.38T + 59T^{2} \) |
| 61 | \( 1 - 61T^{2} \) |
| 67 | \( 1 - 13.1iT - 67T^{2} \) |
| 71 | \( 1 + 3.74iT - 71T^{2} \) |
| 73 | \( 1 - 8.66T + 73T^{2} \) |
| 79 | \( 1 - 14.5T + 79T^{2} \) |
| 83 | \( 1 - 3.14iT - 83T^{2} \) |
| 89 | \( 1 + 3.91T + 89T^{2} \) |
| 97 | \( 1 + 14.8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.571242001093362282326556116996, −8.902169192093541175100378143393, −8.222531681083100604346144541408, −7.08721018003500572579434269718, −6.40231997713965018416407996001, −5.36694574320413916927420814057, −4.87226408980917116906830872501, −3.26785720528028307971795864176, −2.50268729009381790902307397771, −1.16167564426548224357235562516,
1.33523101074745431438719915545, 2.08686191173407561807518048675, 3.66842618575117092852205665020, 4.73545663077480191977415451151, 5.30613707302446211023382746487, 6.37340586519168360819495357101, 7.24514719208775651080263692601, 8.136724969061699653712329182184, 8.878084025283979715826712907600, 9.724844368207541325330608065886