L(s) = 1 | + (2.03 − 0.918i)5-s + (1.31 − 2.29i)7-s + (5.56 − 3.21i)11-s + (1.53 − 1.53i)13-s + (−3.67 − 0.985i)17-s + (−1.19 − 0.687i)19-s + (−8.15 + 2.18i)23-s + (3.31 − 3.74i)25-s − 5.95·29-s + (4.97 + 8.61i)31-s + (0.566 − 5.88i)35-s + (−2.39 + 0.642i)37-s + 1.18i·41-s + (3.28 − 3.28i)43-s + (0.655 + 2.44i)47-s + ⋯ |
L(s) = 1 | + (0.911 − 0.410i)5-s + (0.495 − 0.868i)7-s + (1.67 − 0.967i)11-s + (0.425 − 0.425i)13-s + (−0.892 − 0.239i)17-s + (−0.273 − 0.157i)19-s + (−1.70 + 0.455i)23-s + (0.662 − 0.748i)25-s − 1.10·29-s + (0.893 + 1.54i)31-s + (0.0957 − 0.995i)35-s + (−0.394 + 0.105i)37-s + 0.184i·41-s + (0.500 − 0.500i)43-s + (0.0955 + 0.356i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.416 + 0.909i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.416 + 0.909i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.141866381\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.141866381\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.03 + 0.918i)T \) |
| 7 | \( 1 + (-1.31 + 2.29i)T \) |
good | 11 | \( 1 + (-5.56 + 3.21i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.53 + 1.53i)T - 13iT^{2} \) |
| 17 | \( 1 + (3.67 + 0.985i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.19 + 0.687i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (8.15 - 2.18i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + 5.95T + 29T^{2} \) |
| 31 | \( 1 + (-4.97 - 8.61i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.39 - 0.642i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 - 1.18iT - 41T^{2} \) |
| 43 | \( 1 + (-3.28 + 3.28i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.655 - 2.44i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (-0.482 + 1.80i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (3.27 + 5.67i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.09 + 7.08i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.49 - 9.29i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 8.06iT - 71T^{2} \) |
| 73 | \( 1 + (-12.9 - 3.47i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (-8.00 - 4.62i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.11 + 5.11i)T + 83iT^{2} \) |
| 89 | \( 1 + (3.97 - 6.88i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.537 + 0.537i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.491773569529085739838779941667, −8.745177154022593472555823342607, −8.123829455695954972989876567424, −6.85268728161917893595601662092, −6.28448149047572426527020864697, −5.38060776698330216658659287151, −4.29585710163474862662965233772, −3.53739981884527001171502870724, −1.93601786121330708314766830305, −0.963237080099873913766715364469,
1.77153501487396043615819465719, 2.22859278147549796168496882245, 3.88124461055396629407306025258, 4.62406763801639192182776396284, 6.05656609883075790730198934836, 6.20670438666246053804474802885, 7.26804963625991852504024090296, 8.376057602503914177684222852908, 9.220180414845295120566320617144, 9.596451752232788662192724785924