L(s) = 1 | + (1.14 + 1.91i)5-s + (0.642 + 2.56i)7-s + (2.01 − 1.16i)11-s + (0.104 − 0.104i)13-s + (3.64 + 0.977i)17-s + (−0.646 − 0.373i)19-s + (−1.75 + 0.471i)23-s + (−2.37 + 4.40i)25-s + 7.38·29-s + (0.668 + 1.15i)31-s + (−4.19 + 4.17i)35-s + (−6.66 + 1.78i)37-s − 0.0508i·41-s + (−3.06 + 3.06i)43-s + (−0.746 − 2.78i)47-s + ⋯ |
L(s) = 1 | + (0.512 + 0.858i)5-s + (0.242 + 0.970i)7-s + (0.608 − 0.351i)11-s + (0.0289 − 0.0289i)13-s + (0.884 + 0.237i)17-s + (−0.148 − 0.0855i)19-s + (−0.366 + 0.0982i)23-s + (−0.474 + 0.880i)25-s + 1.37·29-s + (0.120 + 0.207i)31-s + (−0.708 + 0.705i)35-s + (−1.09 + 0.293i)37-s − 0.00794i·41-s + (−0.466 + 0.466i)43-s + (−0.108 − 0.406i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.259 - 0.965i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.259 - 0.965i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.886361526\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.886361526\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-1.14 - 1.91i)T \) |
| 7 | \( 1 + (-0.642 - 2.56i)T \) |
good | 11 | \( 1 + (-2.01 + 1.16i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.104 + 0.104i)T - 13iT^{2} \) |
| 17 | \( 1 + (-3.64 - 0.977i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (0.646 + 0.373i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.75 - 0.471i)T + (19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 - 7.38T + 29T^{2} \) |
| 31 | \( 1 + (-0.668 - 1.15i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (6.66 - 1.78i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 0.0508iT - 41T^{2} \) |
| 43 | \( 1 + (3.06 - 3.06i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.746 + 2.78i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (0.248 - 0.926i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-3.37 - 5.83i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.61 - 6.25i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.62 - 9.80i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 12.8iT - 71T^{2} \) |
| 73 | \( 1 + (-10.9 - 2.94i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (9.97 + 5.75i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.461 + 0.461i)T + 83iT^{2} \) |
| 89 | \( 1 + (-2.21 + 3.83i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.18 - 5.18i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.984573212596237024866985147136, −8.992477465747398745947162674336, −8.367111180918252984136189018753, −7.34489065153569594582457171220, −6.38606455775029316604528229701, −5.85217748354744344150888441770, −4.88723599905737613048938713218, −3.53660993396302169448812062175, −2.69999420199489241660730104717, −1.55269245892348981710132955738,
0.861927074764382066671901683378, 1.91127401346962972640462465394, 3.47905732147217570244527732257, 4.44678486069065553881318326953, 5.15095665086919394396961522763, 6.21847741216002102223053605035, 7.03721635749029601538058820026, 7.996454129472163803076212602328, 8.661445470827627029448329019153, 9.690184497861766841969599449947