L(s) = 1 | + (−1.11 − 1.93i)5-s + (−0.988 + 2.45i)7-s + (2.72 − 1.57i)11-s + (−0.380 − 0.380i)13-s + (−0.321 + 1.20i)17-s + (−5.59 − 3.22i)19-s + (−2.12 − 7.93i)23-s + (−2.49 + 4.33i)25-s + 4.09·29-s + (2.84 + 4.93i)31-s + (5.85 − 0.834i)35-s + (−2.89 − 10.7i)37-s + 7.39i·41-s + (−8.31 − 8.31i)43-s + (1.56 − 0.420i)47-s + ⋯ |
L(s) = 1 | + (−0.500 − 0.865i)5-s + (−0.373 + 0.927i)7-s + (0.820 − 0.473i)11-s + (−0.105 − 0.105i)13-s + (−0.0780 + 0.291i)17-s + (−1.28 − 0.740i)19-s + (−0.443 − 1.65i)23-s + (−0.498 + 0.866i)25-s + 0.761·29-s + (0.511 + 0.885i)31-s + (0.990 − 0.141i)35-s + (−0.475 − 1.77i)37-s + 1.15i·41-s + (−1.26 − 1.26i)43-s + (0.228 − 0.0612i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.703 + 0.710i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.703 + 0.710i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7192166653\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7192166653\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.11 + 1.93i)T \) |
| 7 | \( 1 + (0.988 - 2.45i)T \) |
good | 11 | \( 1 + (-2.72 + 1.57i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.380 + 0.380i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.321 - 1.20i)T + (-14.7 - 8.5i)T^{2} \) |
| 19 | \( 1 + (5.59 + 3.22i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.12 + 7.93i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 4.09T + 29T^{2} \) |
| 31 | \( 1 + (-2.84 - 4.93i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.89 + 10.7i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 7.39iT - 41T^{2} \) |
| 43 | \( 1 + (8.31 + 8.31i)T + 43iT^{2} \) |
| 47 | \( 1 + (-1.56 + 0.420i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (10.7 + 2.88i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (5.50 + 9.52i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.74 - 6.47i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.89 + 1.31i)T + (58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + 15.1iT - 71T^{2} \) |
| 73 | \( 1 + (2.51 - 9.39i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-3.95 - 2.28i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.60 - 2.60i)T - 83iT^{2} \) |
| 89 | \( 1 + (-4.35 + 7.53i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.02 + 2.02i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.999845685092363519227831801833, −8.758360285752263054564300626844, −8.046478805195726020611254854458, −6.68566873246520498621061428497, −6.17340529930623390446501930567, −5.01538595980369646479514581626, −4.29077529580635778220361889148, −3.17994293848999236015208541682, −1.93120738762581935174912822163, −0.29839397773469261489961979755,
1.59258964276122199195719726281, 3.05619428430278365074638365975, 3.90667403618615307989401741868, 4.61004846198396696311376068893, 6.19279104945772343912910387503, 6.65177252873996711343287798312, 7.52633664475732419265260339211, 8.148261385030556182590266196919, 9.370805388783230397704978268431, 10.07945208336430681341311163136