L(s) = 1 | + (−0.258 − 0.965i)5-s + (0.866 + 0.5i)7-s + i·13-s + (0.707 + 1.22i)17-s + (0.5 − 0.866i)19-s + (0.707 − 1.22i)23-s + (−0.866 + 0.499i)25-s − 1.41i·29-s + (−0.5 − 0.866i)31-s + (0.258 − 0.965i)35-s + (0.866 + 0.5i)37-s − i·43-s + (−0.707 + 1.22i)47-s + (0.499 + 0.866i)49-s + (−1.22 + 0.707i)59-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)5-s + (0.866 + 0.5i)7-s + i·13-s + (0.707 + 1.22i)17-s + (0.5 − 0.866i)19-s + (0.707 − 1.22i)23-s + (−0.866 + 0.499i)25-s − 1.41i·29-s + (−0.5 − 0.866i)31-s + (0.258 − 0.965i)35-s + (0.866 + 0.5i)37-s − i·43-s + (−0.707 + 1.22i)47-s + (0.499 + 0.866i)49-s + (−1.22 + 0.707i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.958 + 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.958 + 0.286i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.145798470\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.145798470\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.258 + 0.965i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
good | 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - iT - T^{2} \) |
| 17 | \( 1 + (-0.707 - 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + iT - T^{2} \) |
| 47 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.599218241906931937596057056478, −9.017058869701382609666621553651, −8.227762220541741701115584361148, −7.67678968450708640851697868834, −6.44456081033777997372862677182, −5.56040995991821587758833302283, −4.65767788722302789946416084119, −4.04988577145120062114290003017, −2.47309353936923648400672123748, −1.30642787499293440883789710084,
1.40518854163695122598186741464, 2.99253390799909931709292648865, 3.58943625747657241498378375885, 4.96810271385354587704230734143, 5.59408866770322562098088525403, 6.86283017818192812448711894985, 7.56219642881307815875876199509, 7.968686745767595465960444894469, 9.197620548914343163685202523165, 10.08067036318878566400278378009