L(s) = 1 | + (−0.258 − 0.965i)5-s + (0.866 + 0.5i)7-s + i·13-s + (0.707 + 1.22i)17-s + (0.5 − 0.866i)19-s + (0.707 − 1.22i)23-s + (−0.866 + 0.499i)25-s − 1.41i·29-s + (−0.5 − 0.866i)31-s + (0.258 − 0.965i)35-s + (0.866 + 0.5i)37-s − i·43-s + (−0.707 + 1.22i)47-s + (0.499 + 0.866i)49-s + (−1.22 + 0.707i)59-s + ⋯ |
L(s) = 1 | + (−0.258 − 0.965i)5-s + (0.866 + 0.5i)7-s + i·13-s + (0.707 + 1.22i)17-s + (0.5 − 0.866i)19-s + (0.707 − 1.22i)23-s + (−0.866 + 0.499i)25-s − 1.41i·29-s + (−0.5 − 0.866i)31-s + (0.258 − 0.965i)35-s + (0.866 + 0.5i)37-s − i·43-s + (−0.707 + 1.22i)47-s + (0.499 + 0.866i)49-s + (−1.22 + 0.707i)59-s + ⋯ |
Λ(s)=(=(1260s/2ΓC(s)L(s)(0.958+0.286i)Λ(1−s)
Λ(s)=(=(1260s/2ΓC(s)L(s)(0.958+0.286i)Λ(1−s)
Degree: |
2 |
Conductor: |
1260
= 22⋅32⋅5⋅7
|
Sign: |
0.958+0.286i
|
Analytic conductor: |
0.628821 |
Root analytic conductor: |
0.792982 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1260(989,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1260, ( :0), 0.958+0.286i)
|
Particular Values
L(21) |
≈ |
1.145798470 |
L(21) |
≈ |
1.145798470 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.258+0.965i)T |
| 7 | 1+(−0.866−0.5i)T |
good | 11 | 1+(0.5−0.866i)T2 |
| 13 | 1−iT−T2 |
| 17 | 1+(−0.707−1.22i)T+(−0.5+0.866i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(−0.707+1.22i)T+(−0.5−0.866i)T2 |
| 29 | 1+1.41iT−T2 |
| 31 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+iT−T2 |
| 47 | 1+(0.707−1.22i)T+(−0.5−0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T2 |
| 59 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 79 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.599218241906931937596057056478, −9.017058869701382609666621553651, −8.227762220541741701115584361148, −7.67678968450708640851697868834, −6.44456081033777997372862677182, −5.56040995991821587758833302283, −4.65767788722302789946416084119, −4.04988577145120062114290003017, −2.47309353936923648400672123748, −1.30642787499293440883789710084,
1.40518854163695122598186741464, 2.99253390799909931709292648865, 3.58943625747657241498378375885, 4.96810271385354587704230734143, 5.59408866770322562098088525403, 6.86283017818192812448711894985, 7.56219642881307815875876199509, 7.968686745767595465960444894469, 9.197620548914343163685202523165, 10.08067036318878566400278378009