L(s) = 1 | + (−0.965 + 0.258i)5-s + (−0.866 − 0.5i)7-s − i·13-s + (−0.707 − 1.22i)17-s + (0.5 − 0.866i)19-s + (−0.707 + 1.22i)23-s + (0.866 − 0.499i)25-s − 1.41i·29-s + (−0.5 − 0.866i)31-s + (0.965 + 0.258i)35-s + (−0.866 − 0.5i)37-s + i·43-s + (0.707 − 1.22i)47-s + (0.499 + 0.866i)49-s + (−1.22 + 0.707i)59-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)5-s + (−0.866 − 0.5i)7-s − i·13-s + (−0.707 − 1.22i)17-s + (0.5 − 0.866i)19-s + (−0.707 + 1.22i)23-s + (0.866 − 0.499i)25-s − 1.41i·29-s + (−0.5 − 0.866i)31-s + (0.965 + 0.258i)35-s + (−0.866 − 0.5i)37-s + i·43-s + (0.707 − 1.22i)47-s + (0.499 + 0.866i)49-s + (−1.22 + 0.707i)59-s + ⋯ |
Λ(s)=(=(1260s/2ΓC(s)L(s)(−0.286+0.958i)Λ(1−s)
Λ(s)=(=(1260s/2ΓC(s)L(s)(−0.286+0.958i)Λ(1−s)
Degree: |
2 |
Conductor: |
1260
= 22⋅32⋅5⋅7
|
Sign: |
−0.286+0.958i
|
Analytic conductor: |
0.628821 |
Root analytic conductor: |
0.792982 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1260(989,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1260, ( :0), −0.286+0.958i)
|
Particular Values
L(21) |
≈ |
0.5421548654 |
L(21) |
≈ |
0.5421548654 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.965−0.258i)T |
| 7 | 1+(0.866+0.5i)T |
good | 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+iT−T2 |
| 17 | 1+(0.707+1.22i)T+(−0.5+0.866i)T2 |
| 19 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1+(0.707−1.22i)T+(−0.5−0.866i)T2 |
| 29 | 1+1.41iT−T2 |
| 31 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1−iT−T2 |
| 47 | 1+(−0.707+1.22i)T+(−0.5−0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T2 |
| 59 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 79 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.652608572437304468780350723530, −8.926413044468902832014422924835, −7.68472300837040210079533583376, −7.42048225685788720632866918721, −6.45649862515445015640148528063, −5.43109437496626043576637940879, −4.32670325324356331419844706423, −3.48100328327064860352772278580, −2.62346757628067691120612645287, −0.45689532563816288200387315070,
1.79428896087623349626107626926, 3.24497150741637261208656323365, 3.99282451379923996282847357908, 4.94556141685006509697200062546, 6.13629513688679734349644112607, 6.77219149641461020901166922279, 7.71026971603166349931988538095, 8.778765446423895073357804994128, 8.950399568749888273989848067272, 10.23409557431517017649579814996