L(s) = 1 | + (−0.965 + 0.258i)5-s + (−0.866 − 0.5i)7-s − i·13-s + (−0.707 − 1.22i)17-s + (0.5 − 0.866i)19-s + (−0.707 + 1.22i)23-s + (0.866 − 0.499i)25-s − 1.41i·29-s + (−0.5 − 0.866i)31-s + (0.965 + 0.258i)35-s + (−0.866 − 0.5i)37-s + i·43-s + (0.707 − 1.22i)47-s + (0.499 + 0.866i)49-s + (−1.22 + 0.707i)59-s + ⋯ |
L(s) = 1 | + (−0.965 + 0.258i)5-s + (−0.866 − 0.5i)7-s − i·13-s + (−0.707 − 1.22i)17-s + (0.5 − 0.866i)19-s + (−0.707 + 1.22i)23-s + (0.866 − 0.499i)25-s − 1.41i·29-s + (−0.5 − 0.866i)31-s + (0.965 + 0.258i)35-s + (−0.866 − 0.5i)37-s + i·43-s + (0.707 − 1.22i)47-s + (0.499 + 0.866i)49-s + (−1.22 + 0.707i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.286 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.286 + 0.958i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5421548654\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5421548654\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.965 - 0.258i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
good | 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - iT - T^{2} \) |
| 47 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.652608572437304468780350723530, −8.926413044468902832014422924835, −7.68472300837040210079533583376, −7.42048225685788720632866918721, −6.45649862515445015640148528063, −5.43109437496626043576637940879, −4.32670325324356331419844706423, −3.48100328327064860352772278580, −2.62346757628067691120612645287, −0.45689532563816288200387315070,
1.79428896087623349626107626926, 3.24497150741637261208656323365, 3.99282451379923996282847357908, 4.94556141685006509697200062546, 6.13629513688679734349644112607, 6.77219149641461020901166922279, 7.71026971603166349931988538095, 8.778765446423895073357804994128, 8.950399568749888273989848067272, 10.23409557431517017649579814996