L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.707 + 0.707i)3-s + (−0.499 − 0.866i)4-s + (−0.965 − 0.258i)5-s + (−0.965 + 0.258i)6-s + (−0.258 − 0.965i)7-s + 0.999·8-s + 1.00i·9-s + (0.707 − 0.707i)10-s + (0.866 + 0.5i)11-s + (0.258 − 0.965i)12-s + (0.965 + 0.258i)13-s + (0.965 + 0.258i)14-s + (−0.500 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.707 + 0.707i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (0.707 + 0.707i)3-s + (−0.499 − 0.866i)4-s + (−0.965 − 0.258i)5-s + (−0.965 + 0.258i)6-s + (−0.258 − 0.965i)7-s + 0.999·8-s + 1.00i·9-s + (0.707 − 0.707i)10-s + (0.866 + 0.5i)11-s + (0.258 − 0.965i)12-s + (0.965 + 0.258i)13-s + (0.965 + 0.258i)14-s + (−0.500 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (0.707 + 0.707i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.203 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.203 - 0.979i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9124862028\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9124862028\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.965 + 0.258i)T \) |
| 7 | \( 1 + (0.258 + 0.965i)T \) |
good | 11 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.965 - 0.258i)T + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 19 | \( 1 + 1.41iT - T^{2} \) |
| 23 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 47 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 53 | \( 1 + (-1 - i)T + iT^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + iT - T^{2} \) |
| 73 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.965 - 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.722348352656257875525056198489, −9.165609244161786881390500377572, −8.437828634573039179718705842854, −7.68217021193605930972216487332, −7.05921947660831919266869931870, −6.08945604046071282957409914592, −4.65624388655411653268196830212, −4.25016965665686481607256709995, −3.33526921864234716435143771297, −1.29708298378638582106939934705,
1.13191424589445376553934487090, 2.45135935143368542288086108791, 3.50196319214261299705860292629, 3.81627334095731822982170926284, 5.57958386770808675404901404909, 6.66509403237882870854163402385, 7.55810724212145294074289564784, 8.384290660514656024378683413879, 8.706259701765121751738961877038, 9.567237433432570300003375953186