L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 − 0.866i)4-s − 5-s + (0.499 − 0.866i)6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (0.499 − 0.866i)9-s + (−0.866 + 0.5i)10-s − 0.999i·12-s − 0.999·14-s + (−0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s − 0.999i·18-s + (−0.499 + 0.866i)20-s − 0.999·21-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 − 0.5i)3-s + (0.499 − 0.866i)4-s − 5-s + (0.499 − 0.866i)6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (0.499 − 0.866i)9-s + (−0.866 + 0.5i)10-s − 0.999i·12-s − 0.999·14-s + (−0.866 + 0.5i)15-s + (−0.5 − 0.866i)16-s − 0.999i·18-s + (−0.499 + 0.866i)20-s − 0.999·21-s + ⋯ |
Λ(s)=(=(1260s/2ΓC(s)L(s)(−0.296+0.954i)Λ(1−s)
Λ(s)=(=(1260s/2ΓC(s)L(s)(−0.296+0.954i)Λ(1−s)
Degree: |
2 |
Conductor: |
1260
= 22⋅32⋅5⋅7
|
Sign: |
−0.296+0.954i
|
Analytic conductor: |
0.628821 |
Root analytic conductor: |
0.792982 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1260(299,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1260, ( :0), −0.296+0.954i)
|
Particular Values
L(21) |
≈ |
1.804378035 |
L(21) |
≈ |
1.804378035 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1+(−0.866+0.5i)T |
| 5 | 1+T |
| 7 | 1+(0.866+0.5i)T |
good | 11 | 1+T2 |
| 13 | 1+(−0.5+0.866i)T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T2 |
| 23 | 1−2iT−T2 |
| 29 | 1+(−1.5−0.866i)T+(0.5+0.866i)T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(−0.866+1.5i)T+(−0.5−0.866i)T2 |
| 47 | 1+(0.866+1.5i)T+(−0.5+0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1+T2 |
| 73 | 1+(−0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(0.866−1.5i)T+(−0.5−0.866i)T2 |
| 89 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 97 | 1+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.722903308503074943187783227164, −8.906306890734304115196595285779, −7.83402656602402720356312652080, −7.08306263283818787325872646738, −6.52896801410802086717922928816, −5.25932466250393343784622561448, −4.03295640683285972302453678291, −3.52041502107327942795861360787, −2.70895887295229795491606934733, −1.18522564287751680934537943335,
2.60121535867422162821335173420, 3.10502512536619287865005350163, 4.24942676342106737749656615011, 4.65159310679076219922108652710, 6.02831129149565488126926598592, 6.80200915222145220340710965467, 7.74017106697005777442533150196, 8.396080466477199243907773762826, 9.021106584700497471244897484133, 10.12138138219703362379779919558