L(s) = 1 | + (0.5 − 0.866i)2-s − 3-s + (−0.499 − 0.866i)4-s + 5-s + (−0.5 + 0.866i)6-s + (0.5 − 0.866i)7-s − 0.999·8-s + 9-s + (0.5 − 0.866i)10-s + (0.499 + 0.866i)12-s + (−0.499 − 0.866i)14-s − 15-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)18-s + (−0.499 − 0.866i)20-s + (−0.5 + 0.866i)21-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s − 3-s + (−0.499 − 0.866i)4-s + 5-s + (−0.5 + 0.866i)6-s + (0.5 − 0.866i)7-s − 0.999·8-s + 9-s + (0.5 − 0.866i)10-s + (0.499 + 0.866i)12-s + (−0.499 − 0.866i)14-s − 15-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)18-s + (−0.499 − 0.866i)20-s + (−0.5 + 0.866i)21-s + ⋯ |
Λ(s)=(=(1260s/2ΓC(s)L(s)(−0.400+0.916i)Λ(1−s)
Λ(s)=(=(1260s/2ΓC(s)L(s)(−0.400+0.916i)Λ(1−s)
Degree: |
2 |
Conductor: |
1260
= 22⋅32⋅5⋅7
|
Sign: |
−0.400+0.916i
|
Analytic conductor: |
0.628821 |
Root analytic conductor: |
0.792982 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1260(319,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1260, ( :0), −0.400+0.916i)
|
Particular Values
L(21) |
≈ |
1.158482180 |
L(21) |
≈ |
1.158482180 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5+0.866i)T |
| 3 | 1+T |
| 5 | 1−T |
| 7 | 1+(−0.5+0.866i)T |
good | 11 | 1−T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1−T+T2 |
| 29 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(0.5−0.866i)T2 |
| 41 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 43 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 89 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.877842846919813235236943117042, −9.324244686142360333497034116317, −7.985637042320783740292450537461, −6.79041848317970311452044166939, −6.14124722348907347234077433588, −5.18148788038742473475327454338, −4.65874982858307898869923180944, −3.57193518369719423967751122731, −2.10277314183847177237462616857, −1.08066306694577311942223332024,
1.78854771127628967216023435466, 3.23488698070796818721714174924, 4.66054248793872953131305007481, 5.34260740557641570116647952362, 5.75331704399695372293962118306, 6.73110307643248338198472121730, 7.30330046935198458234703319073, 8.613625797559795280706455998796, 9.125033515723090958650605778923, 10.10565276950189096421681690271