L(s) = 1 | + (0.5 − 0.866i)2-s − 3-s + (−0.499 − 0.866i)4-s + 5-s + (−0.5 + 0.866i)6-s + (0.5 − 0.866i)7-s − 0.999·8-s + 9-s + (0.5 − 0.866i)10-s + (0.499 + 0.866i)12-s + (−0.499 − 0.866i)14-s − 15-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)18-s + (−0.499 − 0.866i)20-s + (−0.5 + 0.866i)21-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s − 3-s + (−0.499 − 0.866i)4-s + 5-s + (−0.5 + 0.866i)6-s + (0.5 − 0.866i)7-s − 0.999·8-s + 9-s + (0.5 − 0.866i)10-s + (0.499 + 0.866i)12-s + (−0.499 − 0.866i)14-s − 15-s + (−0.5 + 0.866i)16-s + (0.5 − 0.866i)18-s + (−0.499 − 0.866i)20-s + (−0.5 + 0.866i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.400 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.158482180\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.158482180\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 - T \) |
| 7 | \( 1 + (-0.5 + 0.866i)T \) |
good | 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 - T + T^{2} \) |
| 29 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.877842846919813235236943117042, −9.324244686142360333497034116317, −7.985637042320783740292450537461, −6.79041848317970311452044166939, −6.14124722348907347234077433588, −5.18148788038742473475327454338, −4.65874982858307898869923180944, −3.57193518369719423967751122731, −2.10277314183847177237462616857, −1.08066306694577311942223332024,
1.78854771127628967216023435466, 3.23488698070796818721714174924, 4.66054248793872953131305007481, 5.34260740557641570116647952362, 5.75331704399695372293962118306, 6.73110307643248338198472121730, 7.30330046935198458234703319073, 8.613625797559795280706455998796, 9.125033515723090958650605778923, 10.10565276950189096421681690271