L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.707 + 0.707i)3-s + (−0.499 − 0.866i)4-s + (−0.258 + 0.965i)5-s + (−0.258 − 0.965i)6-s + (−0.965 + 0.258i)7-s + 0.999·8-s − 1.00i·9-s + (−0.707 − 0.707i)10-s + (−0.866 − 0.5i)11-s + (0.965 + 0.258i)12-s + (0.258 − 0.965i)13-s + (0.258 − 0.965i)14-s + (−0.500 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.707 + 0.707i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.707 + 0.707i)3-s + (−0.499 − 0.866i)4-s + (−0.258 + 0.965i)5-s + (−0.258 − 0.965i)6-s + (−0.965 + 0.258i)7-s + 0.999·8-s − 1.00i·9-s + (−0.707 − 0.707i)10-s + (−0.866 − 0.5i)11-s + (0.965 + 0.258i)12-s + (0.258 − 0.965i)13-s + (0.258 − 0.965i)14-s + (−0.500 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.707 + 0.707i)17-s + ⋯ |
Λ(s)=(=(1260s/2ΓC(s)L(s)(0.784+0.619i)Λ(1−s)
Λ(s)=(=(1260s/2ΓC(s)L(s)(0.784+0.619i)Λ(1−s)
Degree: |
2 |
Conductor: |
1260
= 22⋅32⋅5⋅7
|
Sign: |
0.784+0.619i
|
Analytic conductor: |
0.628821 |
Root analytic conductor: |
0.792982 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1260(727,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1260, ( :0), 0.784+0.619i)
|
Particular Values
L(21) |
≈ |
0.1624505676 |
L(21) |
≈ |
0.1624505676 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1+(0.707−0.707i)T |
| 5 | 1+(0.258−0.965i)T |
| 7 | 1+(0.965−0.258i)T |
good | 11 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 13 | 1+(−0.258+0.965i)T+(−0.866−0.5i)T2 |
| 17 | 1+(0.707−0.707i)T−iT2 |
| 19 | 1+1.41iT−T2 |
| 23 | 1+(−0.866−0.5i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+iT2 |
| 41 | 1+(0.5−0.866i)T2 |
| 43 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
| 47 | 1+(−0.965+0.258i)T+(0.866−0.5i)T2 |
| 53 | 1+(−1+i)T−iT2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(1.22+0.707i)T+(0.5+0.866i)T2 |
| 67 | 1+(0.866+0.5i)T2 |
| 71 | 1−iT−T2 |
| 73 | 1+(0.707+0.707i)T+iT2 |
| 79 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1+(0.258+0.965i)T+(−0.866+0.5i)T2 |
| 89 | 1+T2 |
| 97 | 1+(−0.258−0.965i)T+(−0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.865285793930235054401279603003, −9.005880714344387332215923688746, −8.209774990372482785658539717299, −7.12783076252780754221279975980, −6.45651873690275570782728486654, −5.82906377687909698924198057211, −4.98971840061662865893144092170, −3.78631325972753904022059746087, −2.77688811522051189595600002347, −0.18737140778817125377059364956,
1.36653042965177314555976776395, 2.47909056263184480900536016581, 3.91498746518809432027181761464, 4.72399485465396908515286881164, 5.74746185732176705886632246841, 6.91141907078004746229230815986, 7.58406499049621960556002750981, 8.434818982429577261988082960410, 9.260336588053680347060852244084, 10.03917375717574547706833039787