L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.707 + 0.707i)3-s + (−0.499 − 0.866i)4-s + (−0.258 + 0.965i)5-s + (−0.258 − 0.965i)6-s + (−0.965 + 0.258i)7-s + 0.999·8-s − 1.00i·9-s + (−0.707 − 0.707i)10-s + (−0.866 − 0.5i)11-s + (0.965 + 0.258i)12-s + (0.258 − 0.965i)13-s + (0.258 − 0.965i)14-s + (−0.500 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.707 + 0.707i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.707 + 0.707i)3-s + (−0.499 − 0.866i)4-s + (−0.258 + 0.965i)5-s + (−0.258 − 0.965i)6-s + (−0.965 + 0.258i)7-s + 0.999·8-s − 1.00i·9-s + (−0.707 − 0.707i)10-s + (−0.866 − 0.5i)11-s + (0.965 + 0.258i)12-s + (0.258 − 0.965i)13-s + (0.258 − 0.965i)14-s + (−0.500 − 0.866i)15-s + (−0.5 + 0.866i)16-s + (−0.707 + 0.707i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.784 + 0.619i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.784 + 0.619i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1624505676\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1624505676\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 5 | \( 1 + (0.258 - 0.965i)T \) |
| 7 | \( 1 + (0.965 - 0.258i)T \) |
good | 11 | \( 1 + (0.866 + 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.258 + 0.965i)T + (-0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 19 | \( 1 + 1.41iT - T^{2} \) |
| 23 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 47 | \( 1 + (-0.965 + 0.258i)T + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (-1 + i)T - iT^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - iT - T^{2} \) |
| 73 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.258 + 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.258 - 0.965i)T + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.865285793930235054401279603003, −9.005880714344387332215923688746, −8.209774990372482785658539717299, −7.12783076252780754221279975980, −6.45651873690275570782728486654, −5.82906377687909698924198057211, −4.98971840061662865893144092170, −3.78631325972753904022059746087, −2.77688811522051189595600002347, −0.18737140778817125377059364956,
1.36653042965177314555976776395, 2.47909056263184480900536016581, 3.91498746518809432027181761464, 4.72399485465396908515286881164, 5.74746185732176705886632246841, 6.91141907078004746229230815986, 7.58406499049621960556002750981, 8.434818982429577261988082960410, 9.260336588053680347060852244084, 10.03917375717574547706833039787