L(s) = 1 | + (−1.33 + 1.79i)5-s + (−0.921 + 2.47i)7-s + (−2.62 − 4.54i)11-s + (0.0789 + 0.0789i)13-s + (0.566 + 0.151i)17-s + (−1.74 + 3.01i)19-s + (−0.849 − 3.17i)23-s + (−1.42 − 4.79i)25-s − 1.60i·29-s + (−6.78 + 3.91i)31-s + (−3.20 − 4.96i)35-s + (5.08 − 1.36i)37-s − 9.92i·41-s + (6.41 − 6.41i)43-s + (−0.795 − 2.96i)47-s + ⋯ |
L(s) = 1 | + (−0.598 + 0.801i)5-s + (−0.348 + 0.937i)7-s + (−0.791 − 1.37i)11-s + (0.0219 + 0.0219i)13-s + (0.137 + 0.0368i)17-s + (−0.399 + 0.691i)19-s + (−0.177 − 0.661i)23-s + (−0.284 − 0.958i)25-s − 0.297i·29-s + (−1.21 + 0.703i)31-s + (−0.542 − 0.840i)35-s + (0.836 − 0.224i)37-s − 1.55i·41-s + (0.979 − 0.979i)43-s + (−0.116 − 0.433i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.540 + 0.841i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.540 + 0.841i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2867576338\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2867576338\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (1.33 - 1.79i)T \) |
| 7 | \( 1 + (0.921 - 2.47i)T \) |
good | 11 | \( 1 + (2.62 + 4.54i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.0789 - 0.0789i)T + 13iT^{2} \) |
| 17 | \( 1 + (-0.566 - 0.151i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.74 - 3.01i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.849 + 3.17i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 1.60iT - 29T^{2} \) |
| 31 | \( 1 + (6.78 - 3.91i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.08 + 1.36i)T + (32.0 - 18.5i)T^{2} \) |
| 41 | \( 1 + 9.92iT - 41T^{2} \) |
| 43 | \( 1 + (-6.41 + 6.41i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.795 + 2.96i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (4.98 + 1.33i)T + (45.8 + 26.5i)T^{2} \) |
| 59 | \( 1 + (1.80 + 3.12i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.98 - 1.14i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.681 + 2.54i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 7.46T + 71T^{2} \) |
| 73 | \( 1 + (-0.453 + 1.69i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (1.23 + 0.710i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (8.68 + 8.68i)T + 83iT^{2} \) |
| 89 | \( 1 + (6.39 - 11.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.289 + 0.289i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.314424632010597554556834232231, −8.497989576111543506058449005236, −7.914820072191319093023910247891, −6.91209223381591335450637529856, −5.99326784277622352969827573520, −5.43550747480892492510398411980, −3.97420934291796319895197403067, −3.15148214230781449067239308357, −2.27916062236268924452320214290, −0.12092992611779901092538770073,
1.40300751997427725388029560920, 2.88410670012411399014298880341, 4.17891433585797042958417455848, 4.61649410646895587615868561716, 5.67719500051742185961562627748, 6.91421112800232270822179714744, 7.57913736035496438259786022231, 8.126246927748536572088907509657, 9.409625027360072203981613048667, 9.724328155417660106847635248331