L(s) = 1 | + (−0.866 − 1.5i)3-s + (−1.86 − 1.23i)5-s + (0.866 + 0.5i)7-s + (−1.5 + 2.59i)9-s + (−2 + 3.46i)11-s + (2.59 − 1.5i)13-s + (−0.232 + 3.86i)15-s − i·17-s − 1.73i·21-s + (−1.73 + i)23-s + (1.96 + 4.59i)25-s + 5.19·27-s + (−4.5 + 7.79i)29-s + (1 + 1.73i)31-s + 6.92·33-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.866i)3-s + (−0.834 − 0.550i)5-s + (0.327 + 0.188i)7-s + (−0.5 + 0.866i)9-s + (−0.603 + 1.04i)11-s + (0.720 − 0.416i)13-s + (−0.0599 + 0.998i)15-s − 0.242i·17-s − 0.377i·21-s + (−0.361 + 0.208i)23-s + (0.392 + 0.919i)25-s + 1.00·27-s + (−0.835 + 1.44i)29-s + (0.179 + 0.311i)31-s + 1.20·33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.958 - 0.285i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.958 - 0.285i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9331285820\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9331285820\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.866 + 1.5i)T \) |
| 5 | \( 1 + (1.86 + 1.23i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
good | 11 | \( 1 + (2 - 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.59 + 1.5i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + iT - 17T^{2} \) |
| 19 | \( 1 + 19T^{2} \) |
| 23 | \( 1 + (1.73 - i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 - 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 - 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2iT - 37T^{2} \) |
| 41 | \( 1 + (-4 - 6.92i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-3.46 - 2i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.92 - 4i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 12iT - 53T^{2} \) |
| 59 | \( 1 + (-1 - 1.73i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-6.92 + 4i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 15T + 71T^{2} \) |
| 73 | \( 1 + iT - 73T^{2} \) |
| 79 | \( 1 + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.33 - 2.5i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + (-8.66 - 5i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.681294383027902263978577291799, −8.676667305608956921794315144006, −7.923735694295337812558084662541, −7.43726100580666898065327357964, −6.51808465457385390205990271300, −5.37291433655454752979645746624, −4.86776518831482652007632499713, −3.63029367988947763109810121913, −2.24260433948137023612694767597, −1.03874758617165034622041014301,
0.52371962766200080314849693521, 2.63792625550613652716420046502, 3.83295036199417631668098564157, 4.19442792498723532775955895236, 5.53703103319753871263825235567, 6.12679294336890097457756204427, 7.20193056129773641842098672708, 8.155604445094922629608977350077, 8.756776347163118706167895106360, 9.806163210741003495408582665271