L(s) = 1 | + (−1 − 2i)5-s + i·7-s − 4i·13-s − 4i·17-s − 4·19-s + 8i·23-s + (−3 + 4i)25-s + 2·29-s − 8·31-s + (2 − i)35-s − 8i·37-s − 6·41-s − 8i·43-s − 8i·47-s − 49-s + ⋯ |
L(s) = 1 | + (−0.447 − 0.894i)5-s + 0.377i·7-s − 1.10i·13-s − 0.970i·17-s − 0.917·19-s + 1.66i·23-s + (−0.600 + 0.800i)25-s + 0.371·29-s − 1.43·31-s + (0.338 − 0.169i)35-s − 1.31i·37-s − 0.937·41-s − 1.21i·43-s − 1.16i·47-s − 0.142·49-s + ⋯ |
Λ(s)=(=(1260s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(1260s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1260
= 22⋅32⋅5⋅7
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
10.0611 |
Root analytic conductor: |
3.17193 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1260(1009,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1260, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
0.6517733236 |
L(21) |
≈ |
0.6517733236 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(1+2i)T |
| 7 | 1−iT |
good | 11 | 1+11T2 |
| 13 | 1+4iT−13T2 |
| 17 | 1+4iT−17T2 |
| 19 | 1+4T+19T2 |
| 23 | 1−8iT−23T2 |
| 29 | 1−2T+29T2 |
| 31 | 1+8T+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1+8iT−43T2 |
| 47 | 1+8iT−47T2 |
| 53 | 1−53T2 |
| 59 | 1+4T+59T2 |
| 61 | 1+6T+61T2 |
| 67 | 1−8iT−67T2 |
| 71 | 1+12T+71T2 |
| 73 | 1−4iT−73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+12iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.165611770956031616213594010138, −8.643470355764417466753512147604, −7.72514320118517489118670067005, −7.08569018465165700243735778601, −5.62085455269324287305993389993, −5.30863946361300690156724032679, −4.12284037305519620721569663355, −3.18718983780593793711955095159, −1.79452251166668040447689198556, −0.26379374275432735683046553226,
1.77944218236695912773050263148, 2.96765216725405715849112457162, 4.03685911738431397278418732169, 4.67198866454970854600655997116, 6.35548679544745067335869699082, 6.50126589139299238862603764220, 7.58758503190917037834068109774, 8.345806656197979186835781356270, 9.181292137054726356015120717343, 10.28630686549445911423429436399