Properties

Label 2-1260-5.4-c1-0-14
Degree $2$
Conductor $1260$
Sign $-0.894 + 0.447i$
Analytic cond. $10.0611$
Root an. cond. $3.17193$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1 − 2i)5-s + i·7-s − 4i·13-s − 4i·17-s − 4·19-s + 8i·23-s + (−3 + 4i)25-s + 2·29-s − 8·31-s + (2 − i)35-s − 8i·37-s − 6·41-s − 8i·43-s − 8i·47-s − 49-s + ⋯
L(s)  = 1  + (−0.447 − 0.894i)5-s + 0.377i·7-s − 1.10i·13-s − 0.970i·17-s − 0.917·19-s + 1.66i·23-s + (−0.600 + 0.800i)25-s + 0.371·29-s − 1.43·31-s + (0.338 − 0.169i)35-s − 1.31i·37-s − 0.937·41-s − 1.21i·43-s − 1.16i·47-s − 0.142·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1260 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1260\)    =    \(2^{2} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(10.0611\)
Root analytic conductor: \(3.17193\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1260} (1009, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1260,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6517733236\)
\(L(\frac12)\) \(\approx\) \(0.6517733236\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1 + 2i)T \)
7 \( 1 - iT \)
good11 \( 1 + 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 + 4iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 - 8iT - 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + 8iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 8iT - 43T^{2} \)
47 \( 1 + 8iT - 47T^{2} \)
53 \( 1 - 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 8iT - 67T^{2} \)
71 \( 1 + 12T + 71T^{2} \)
73 \( 1 - 4iT - 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + 12iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.165611770956031616213594010138, −8.643470355764417466753512147604, −7.72514320118517489118670067005, −7.08569018465165700243735778601, −5.62085455269324287305993389993, −5.30863946361300690156724032679, −4.12284037305519620721569663355, −3.18718983780593793711955095159, −1.79452251166668040447689198556, −0.26379374275432735683046553226, 1.77944218236695912773050263148, 2.96765216725405715849112457162, 4.03685911738431397278418732169, 4.67198866454970854600655997116, 6.35548679544745067335869699082, 6.50126589139299238862603764220, 7.58758503190917037834068109774, 8.345806656197979186835781356270, 9.181292137054726356015120717343, 10.28630686549445911423429436399

Graph of the $Z$-function along the critical line