Properties

Label 2-1280-1.1-c1-0-1
Degree $2$
Conductor $1280$
Sign $1$
Analytic cond. $10.2208$
Root an. cond. $3.19700$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·3-s − 5-s − 4.24·7-s − 0.999·9-s − 2.82·11-s + 6·13-s + 1.41·15-s − 6·17-s + 6·21-s − 4.24·23-s + 25-s + 5.65·27-s + 8.48·31-s + 4.00·33-s + 4.24·35-s + 6·37-s − 8.48·39-s − 4.24·43-s + 0.999·45-s − 4.24·47-s + 10.9·49-s + 8.48·51-s + 6·53-s + 2.82·55-s + 11.3·59-s + 6·61-s + 4.24·63-s + ⋯
L(s)  = 1  − 0.816·3-s − 0.447·5-s − 1.60·7-s − 0.333·9-s − 0.852·11-s + 1.66·13-s + 0.365·15-s − 1.45·17-s + 1.30·21-s − 0.884·23-s + 0.200·25-s + 1.08·27-s + 1.52·31-s + 0.696·33-s + 0.717·35-s + 0.986·37-s − 1.35·39-s − 0.646·43-s + 0.149·45-s − 0.618·47-s + 1.57·49-s + 1.18·51-s + 0.824·53-s + 0.381·55-s + 1.47·59-s + 0.768·61-s + 0.534·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1280\)    =    \(2^{8} \cdot 5\)
Sign: $1$
Analytic conductor: \(10.2208\)
Root analytic conductor: \(3.19700\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1280,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5682945337\)
\(L(\frac12)\) \(\approx\) \(0.5682945337\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
good3 \( 1 + 1.41T + 3T^{2} \)
7 \( 1 + 4.24T + 7T^{2} \)
11 \( 1 + 2.82T + 11T^{2} \)
13 \( 1 - 6T + 13T^{2} \)
17 \( 1 + 6T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 4.24T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 8.48T + 31T^{2} \)
37 \( 1 - 6T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 4.24T + 43T^{2} \)
47 \( 1 + 4.24T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 - 11.3T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 12.7T + 67T^{2} \)
71 \( 1 - 8.48T + 71T^{2} \)
73 \( 1 - 2T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 9.89T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.846377218199681276510456688328, −8.738274232173859911270761301890, −8.225644001215007256674853945339, −6.88182299139604217683041104746, −6.29816005094751805378416959272, −5.75350153142798823221858595873, −4.51513660513266237777869947549, −3.55272273975099011986207869498, −2.58869397114922239048526968229, −0.54753295451859924133001168155, 0.54753295451859924133001168155, 2.58869397114922239048526968229, 3.55272273975099011986207869498, 4.51513660513266237777869947549, 5.75350153142798823221858595873, 6.29816005094751805378416959272, 6.88182299139604217683041104746, 8.225644001215007256674853945339, 8.738274232173859911270761301890, 9.846377218199681276510456688328

Graph of the $Z$-function along the critical line