L(s) = 1 | − 3.16·3-s + 5-s + 3.16·7-s + 7.00·9-s + 6·13-s − 3.16·15-s − 2·17-s − 6.32·19-s − 10.0·21-s + 3.16·23-s + 25-s − 12.6·27-s − 4·29-s + 6.32·31-s + 3.16·35-s + 2·37-s − 18.9·39-s + 3.16·43-s + 7.00·45-s − 9.48·47-s + 3.00·49-s + 6.32·51-s + 6·53-s + 20.0·57-s + 6.32·59-s + 2·61-s + 22.1·63-s + ⋯ |
L(s) = 1 | − 1.82·3-s + 0.447·5-s + 1.19·7-s + 2.33·9-s + 1.66·13-s − 0.816·15-s − 0.485·17-s − 1.45·19-s − 2.18·21-s + 0.659·23-s + 0.200·25-s − 2.43·27-s − 0.742·29-s + 1.13·31-s + 0.534·35-s + 0.328·37-s − 3.03·39-s + 0.482·43-s + 1.04·45-s − 1.38·47-s + 0.428·49-s + 0.885·51-s + 0.824·53-s + 2.64·57-s + 0.823·59-s + 0.256·61-s + 2.78·63-s + ⋯ |
Λ(s)=(=(1280s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1280s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.185742339 |
L(21) |
≈ |
1.185742339 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−T |
good | 3 | 1+3.16T+3T2 |
| 7 | 1−3.16T+7T2 |
| 11 | 1+11T2 |
| 13 | 1−6T+13T2 |
| 17 | 1+2T+17T2 |
| 19 | 1+6.32T+19T2 |
| 23 | 1−3.16T+23T2 |
| 29 | 1+4T+29T2 |
| 31 | 1−6.32T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+41T2 |
| 43 | 1−3.16T+43T2 |
| 47 | 1+9.48T+47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1−6.32T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1−9.48T+67T2 |
| 71 | 1−6.32T+71T2 |
| 73 | 1−14T+73T2 |
| 79 | 1+12.6T+79T2 |
| 83 | 1−3.16T+83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1−2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.993989183966640743854798695329, −8.806452491469126879548474285117, −8.063211486843389197476564753252, −6.80508645682960614151316738021, −6.29472436855216926146874384811, −5.51294510289470159195864801378, −4.75069261522851296956854782525, −3.98301113428580727168680938402, −1.94604474015196483810973752484, −0.939645492925122803991613819594,
0.939645492925122803991613819594, 1.94604474015196483810973752484, 3.98301113428580727168680938402, 4.75069261522851296956854782525, 5.51294510289470159195864801378, 6.29472436855216926146874384811, 6.80508645682960614151316738021, 8.063211486843389197476564753252, 8.806452491469126879548474285117, 9.993989183966640743854798695329