L(s) = 1 | + (−2.21 − 2.21i)3-s + (0.707 − 0.707i)5-s − 0.275i·7-s + 6.85i·9-s + (4.13 − 4.13i)11-s + (2.71 + 2.71i)13-s − 3.13·15-s + 1.61·17-s + (1.71 + 1.71i)19-s + (−0.610 + 0.610i)21-s + 6.99i·23-s − 1.00i·25-s + (8.55 − 8.55i)27-s + (5.27 + 5.27i)29-s + 8.82·31-s + ⋯ |
L(s) = 1 | + (−1.28 − 1.28i)3-s + (0.316 − 0.316i)5-s − 0.104i·7-s + 2.28i·9-s + (1.24 − 1.24i)11-s + (0.752 + 0.752i)13-s − 0.810·15-s + 0.390·17-s + (0.393 + 0.393i)19-s + (−0.133 + 0.133i)21-s + 1.45i·23-s − 0.200i·25-s + (1.64 − 1.64i)27-s + (0.980 + 0.980i)29-s + 1.58·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.303996063\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.303996063\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (2.21 + 2.21i)T + 3iT^{2} \) |
| 7 | \( 1 + 0.275iT - 7T^{2} \) |
| 11 | \( 1 + (-4.13 + 4.13i)T - 11iT^{2} \) |
| 13 | \( 1 + (-2.71 - 2.71i)T + 13iT^{2} \) |
| 17 | \( 1 - 1.61T + 17T^{2} \) |
| 19 | \( 1 + (-1.71 - 1.71i)T + 19iT^{2} \) |
| 23 | \( 1 - 6.99iT - 23T^{2} \) |
| 29 | \( 1 + (-5.27 - 5.27i)T + 29iT^{2} \) |
| 31 | \( 1 - 8.82T + 31T^{2} \) |
| 37 | \( 1 + (-1.85 + 1.85i)T - 37iT^{2} \) |
| 41 | \( 1 - 5.85iT - 41T^{2} \) |
| 43 | \( 1 + (0.333 - 0.333i)T - 43iT^{2} \) |
| 47 | \( 1 + 3.10T + 47T^{2} \) |
| 53 | \( 1 + (-3.10 + 3.10i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.99 - 3.99i)T - 59iT^{2} \) |
| 61 | \( 1 + (7.88 + 7.88i)T + 61iT^{2} \) |
| 67 | \( 1 + (7.60 + 7.60i)T + 67iT^{2} \) |
| 71 | \( 1 + 2.57iT - 71T^{2} \) |
| 73 | \( 1 + 3.88iT - 73T^{2} \) |
| 79 | \( 1 - 2.22T + 79T^{2} \) |
| 83 | \( 1 + (9.55 + 9.55i)T + 83iT^{2} \) |
| 89 | \( 1 - 7.62iT - 89T^{2} \) |
| 97 | \( 1 + 12.3T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.475392197044213736857376665111, −8.579951848674893227836350371729, −7.77158785333863600434797018107, −6.77101828738898954896377378855, −6.20274761088172799233872254177, −5.68344340513070767915984947825, −4.60796486008307613769061257924, −3.29378198766630426531027071542, −1.52906718013386617819333026101, −1.02134191042172874961762549203,
0.964216850251806192688467743250, 2.85462496016808406253768480320, 4.15435453712189052849385099207, 4.57422485106132135242389473459, 5.67425536915173140340069049019, 6.31407705242049333756995147272, 6.99904246643489887132957924103, 8.437133394195580911960228977783, 9.325203459967043065442890136800, 10.10136170493433293731306031292