L(s) = 1 | + (2.07 + 2.07i)3-s + (0.707 − 0.707i)5-s + 4.34i·7-s + 5.59i·9-s + (2.66 − 2.66i)11-s + (−0.482 − 0.482i)13-s + 2.93·15-s + 0.353·17-s + (5.39 + 5.39i)19-s + (−9.00 + 9.00i)21-s − 6.62i·23-s − 1.00i·25-s + (−5.38 + 5.38i)27-s + (−3.42 − 3.42i)29-s − 0.635·31-s + ⋯ |
L(s) = 1 | + (1.19 + 1.19i)3-s + (0.316 − 0.316i)5-s + 1.64i·7-s + 1.86i·9-s + (0.803 − 0.803i)11-s + (−0.133 − 0.133i)13-s + 0.757·15-s + 0.0856·17-s + (1.23 + 1.23i)19-s + (−1.96 + 1.96i)21-s − 1.38i·23-s − 0.200i·25-s + (−1.03 + 1.03i)27-s + (−0.636 − 0.636i)29-s − 0.114·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.130 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.737314119\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.737314119\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (-2.07 - 2.07i)T + 3iT^{2} \) |
| 7 | \( 1 - 4.34iT - 7T^{2} \) |
| 11 | \( 1 + (-2.66 + 2.66i)T - 11iT^{2} \) |
| 13 | \( 1 + (0.482 + 0.482i)T + 13iT^{2} \) |
| 17 | \( 1 - 0.353T + 17T^{2} \) |
| 19 | \( 1 + (-5.39 - 5.39i)T + 19iT^{2} \) |
| 23 | \( 1 + 6.62iT - 23T^{2} \) |
| 29 | \( 1 + (3.42 + 3.42i)T + 29iT^{2} \) |
| 31 | \( 1 + 0.635T + 31T^{2} \) |
| 37 | \( 1 + (3.13 - 3.13i)T - 37iT^{2} \) |
| 41 | \( 1 + 2.33iT - 41T^{2} \) |
| 43 | \( 1 + (7.59 - 7.59i)T - 43iT^{2} \) |
| 47 | \( 1 + 5.41T + 47T^{2} \) |
| 53 | \( 1 + (4.49 - 4.49i)T - 53iT^{2} \) |
| 59 | \( 1 + (-9.46 + 9.46i)T - 59iT^{2} \) |
| 61 | \( 1 + (-6.21 - 6.21i)T + 61iT^{2} \) |
| 67 | \( 1 + (-0.362 - 0.362i)T + 67iT^{2} \) |
| 71 | \( 1 + 7.32iT - 71T^{2} \) |
| 73 | \( 1 + 10.3iT - 73T^{2} \) |
| 79 | \( 1 - 8.13T + 79T^{2} \) |
| 83 | \( 1 + (8.41 + 8.41i)T + 83iT^{2} \) |
| 89 | \( 1 - 4.55iT - 89T^{2} \) |
| 97 | \( 1 - 2.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.623423789791033478173779959851, −9.147720746876663428045816298544, −8.439638392531215138598110372712, −8.006895694718641404572179255914, −6.35838832419830317930312745852, −5.54311331089296146887413073034, −4.76501479499459263514360994231, −3.60203241833893060439928007872, −2.93566423092497240917682499811, −1.86965675106843992932303434630,
1.08834351388124470029722074253, 1.92529604606402138159913831497, 3.23600918664047299206790054253, 3.87691603190168490866805384974, 5.21532420812280893479773892588, 6.79153497449269558944504945619, 7.07328872487170244310064120651, 7.50927483167651060336182068716, 8.546906384525315582150332380122, 9.522272547808785641091309728707