L(s) = 1 | + (−2.07 + 2.07i)3-s + (−0.707 − 0.707i)5-s − 4.34i·7-s − 5.59i·9-s + (−2.66 − 2.66i)11-s + (0.482 − 0.482i)13-s + 2.93·15-s + 0.353·17-s + (−5.39 + 5.39i)19-s + (9.00 + 9.00i)21-s + 6.62i·23-s + 1.00i·25-s + (5.38 + 5.38i)27-s + (3.42 − 3.42i)29-s − 0.635·31-s + ⋯ |
L(s) = 1 | + (−1.19 + 1.19i)3-s + (−0.316 − 0.316i)5-s − 1.64i·7-s − 1.86i·9-s + (−0.803 − 0.803i)11-s + (0.133 − 0.133i)13-s + 0.757·15-s + 0.0856·17-s + (−1.23 + 1.23i)19-s + (1.96 + 1.96i)21-s + 1.38i·23-s + 0.200i·25-s + (1.03 + 1.03i)27-s + (0.636 − 0.636i)29-s − 0.114·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.3698950574\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3698950574\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (2.07 - 2.07i)T - 3iT^{2} \) |
| 7 | \( 1 + 4.34iT - 7T^{2} \) |
| 11 | \( 1 + (2.66 + 2.66i)T + 11iT^{2} \) |
| 13 | \( 1 + (-0.482 + 0.482i)T - 13iT^{2} \) |
| 17 | \( 1 - 0.353T + 17T^{2} \) |
| 19 | \( 1 + (5.39 - 5.39i)T - 19iT^{2} \) |
| 23 | \( 1 - 6.62iT - 23T^{2} \) |
| 29 | \( 1 + (-3.42 + 3.42i)T - 29iT^{2} \) |
| 31 | \( 1 + 0.635T + 31T^{2} \) |
| 37 | \( 1 + (-3.13 - 3.13i)T + 37iT^{2} \) |
| 41 | \( 1 - 2.33iT - 41T^{2} \) |
| 43 | \( 1 + (-7.59 - 7.59i)T + 43iT^{2} \) |
| 47 | \( 1 + 5.41T + 47T^{2} \) |
| 53 | \( 1 + (-4.49 - 4.49i)T + 53iT^{2} \) |
| 59 | \( 1 + (9.46 + 9.46i)T + 59iT^{2} \) |
| 61 | \( 1 + (6.21 - 6.21i)T - 61iT^{2} \) |
| 67 | \( 1 + (0.362 - 0.362i)T - 67iT^{2} \) |
| 71 | \( 1 - 7.32iT - 71T^{2} \) |
| 73 | \( 1 - 10.3iT - 73T^{2} \) |
| 79 | \( 1 - 8.13T + 79T^{2} \) |
| 83 | \( 1 + (-8.41 + 8.41i)T - 83iT^{2} \) |
| 89 | \( 1 + 4.55iT - 89T^{2} \) |
| 97 | \( 1 - 2.17T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.14636424624556039010278072755, −9.521748221263370924392629227421, −8.226739380736140537684776032875, −7.61201307802128939178844446738, −6.35764751163062124893671260913, −5.74289556948023748374876156718, −4.70770728799478671547119180847, −4.11989636679526359674266323276, −3.35744883822025981305804682954, −1.01855608609130035749699547431,
0.21861263099550602160385757970, 2.05630458421478578062995732522, 2.63170040851355188185723719581, 4.60846856672202946288491677246, 5.29764018055760203487068828638, 6.21838126424111555267841270415, 6.71538404150209752952730361701, 7.59300054745118355724138874830, 8.455135044216723036228804686372, 9.225275478462835859459202195534