L(s) = 1 | + i·5-s + 9-s − 25-s + 2i·29-s + 2·41-s + i·45-s − 49-s − 2i·61-s + 81-s − 2·89-s − 2i·101-s − 2i·109-s + ⋯ |
L(s) = 1 | + i·5-s + 9-s − 25-s + 2i·29-s + 2·41-s + i·45-s − 49-s − 2i·61-s + 81-s − 2·89-s − 2i·101-s − 2i·109-s + ⋯ |
Λ(s)=(=(1280s/2ΓC(s)L(s)(0.707−0.707i)Λ(1−s)
Λ(s)=(=(1280s/2ΓC(s)L(s)(0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
1280
= 28⋅5
|
Sign: |
0.707−0.707i
|
Analytic conductor: |
0.638803 |
Root analytic conductor: |
0.799251 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1280(639,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1280, ( :0), 0.707−0.707i)
|
Particular Values
L(21) |
≈ |
1.131734578 |
L(21) |
≈ |
1.131734578 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1−iT |
good | 3 | 1−T2 |
| 7 | 1+T2 |
| 11 | 1+T2 |
| 13 | 1+T2 |
| 17 | 1−T2 |
| 19 | 1+T2 |
| 23 | 1+T2 |
| 29 | 1−2iT−T2 |
| 31 | 1−T2 |
| 37 | 1+T2 |
| 41 | 1−2T+T2 |
| 43 | 1−T2 |
| 47 | 1+T2 |
| 53 | 1+T2 |
| 59 | 1+T2 |
| 61 | 1+2iT−T2 |
| 67 | 1−T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+2T+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.952380009061971476016893250330, −9.362415640710904540750174732075, −8.246088991136250399594171153945, −7.33608252330103242552435231391, −6.83982491707451663541364549824, −5.93330150882845923892834145932, −4.82352186882573125275769387637, −3.82502464749591129704786151542, −2.89733515607916253952647196850, −1.64330031213782616999717196204,
1.12985572546244192274549107844, 2.38980190813354691460753359718, 3.97423021975834343415153124354, 4.50307621547822240437210255771, 5.54359395567518135212106836468, 6.39194979146782392669591705024, 7.51041393700793237534338313363, 8.064006775761831723103436634520, 9.081758883693930174934303337483, 9.667459165055266968595816369154