L(s) = 1 | + i·5-s + 9-s − 25-s + 2i·29-s + 2·41-s + i·45-s − 49-s − 2i·61-s + 81-s − 2·89-s − 2i·101-s − 2i·109-s + ⋯ |
L(s) = 1 | + i·5-s + 9-s − 25-s + 2i·29-s + 2·41-s + i·45-s − 49-s − 2i·61-s + 81-s − 2·89-s − 2i·101-s − 2i·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.131734578\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.131734578\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - iT \) |
good | 3 | \( 1 - T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 - 2iT - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 2T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + 2iT - T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 2T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.952380009061971476016893250330, −9.362415640710904540750174732075, −8.246088991136250399594171153945, −7.33608252330103242552435231391, −6.83982491707451663541364549824, −5.93330150882845923892834145932, −4.82352186882573125275769387637, −3.82502464749591129704786151542, −2.89733515607916253952647196850, −1.64330031213782616999717196204,
1.12985572546244192274549107844, 2.38980190813354691460753359718, 3.97423021975834343415153124354, 4.50307621547822240437210255771, 5.54359395567518135212106836468, 6.39194979146782392669591705024, 7.51041393700793237534338313363, 8.064006775761831723103436634520, 9.081758883693930174934303337483, 9.667459165055266968595816369154