L(s) = 1 | + (−1.07 + 0.916i)2-s + (1.67 − 0.427i)3-s + (0.320 − 1.97i)4-s + (−0.170 − 0.0458i)5-s + (−1.41 + 1.99i)6-s + (1.17 − 2.03i)7-s + (1.46 + 2.42i)8-s + (2.63 − 1.43i)9-s + (0.226 − 0.107i)10-s + (−0.340 + 0.0913i)11-s + (−0.305 − 3.45i)12-s + (−1.49 − 0.399i)13-s + (0.598 + 3.26i)14-s + (−0.306 − 0.00382i)15-s + (−3.79 − 1.26i)16-s + 3.58i·17-s + ⋯ |
L(s) = 1 | + (−0.761 + 0.647i)2-s + (0.969 − 0.246i)3-s + (0.160 − 0.987i)4-s + (−0.0764 − 0.0204i)5-s + (−0.578 + 0.815i)6-s + (0.443 − 0.768i)7-s + (0.517 + 0.855i)8-s + (0.878 − 0.478i)9-s + (0.0715 − 0.0339i)10-s + (−0.102 + 0.0275i)11-s + (−0.0880 − 0.996i)12-s + (−0.413 − 0.110i)13-s + (0.160 + 0.873i)14-s + (−0.0791 − 0.000988i)15-s + (−0.948 − 0.316i)16-s + 0.868i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.132i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.132i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.05864 + 0.0703719i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.05864 + 0.0703719i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.07 - 0.916i)T \) |
| 3 | \( 1 + (-1.67 + 0.427i)T \) |
good | 5 | \( 1 + (0.170 + 0.0458i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-1.17 + 2.03i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.340 - 0.0913i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (1.49 + 0.399i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 - 3.58iT - 17T^{2} \) |
| 19 | \( 1 + (-5.36 - 5.36i)T + 19iT^{2} \) |
| 23 | \( 1 + (-0.165 + 0.0953i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (9.10 - 2.43i)T + (25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (3.43 - 1.98i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (3.28 + 3.28i)T + 37iT^{2} \) |
| 41 | \( 1 + (4.25 + 7.37i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.09 - 4.09i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (-4.93 + 8.53i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.83 - 4.83i)T - 53iT^{2} \) |
| 59 | \( 1 + (0.720 - 2.68i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (-2.13 - 7.97i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (3.06 - 11.4i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 1.13iT - 71T^{2} \) |
| 73 | \( 1 + 5.67iT - 73T^{2} \) |
| 79 | \( 1 + (-12.8 - 7.42i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.31 + 12.3i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 - 3.05T + 89T^{2} \) |
| 97 | \( 1 + (0.996 - 1.72i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.50287055351023921067931358826, −12.15631270372261387263129552336, −10.67742863554048508224456721445, −9.868997182241823847297747865005, −8.797861062741152124770885230439, −7.73044010056297975789014413082, −7.24889233642238225958545710451, −5.62350172824571111955628803289, −3.88255319808369016891371714270, −1.70112376159042157314701772551,
2.12382356680289453530598186440, 3.35550892050438307896237433282, 4.97746858154872983542807247827, 7.23364026890578226585867385603, 8.003498210119450136105467790288, 9.277740402699432728755930817001, 9.550159359149155262550260104818, 11.08318753361510630391886489279, 11.83294173994983227124013242282, 13.05850556389694420787965853921