L(s) = 1 | + (−1.07 + 0.916i)2-s + (1.67 − 0.427i)3-s + (0.320 − 1.97i)4-s + (−0.170 − 0.0458i)5-s + (−1.41 + 1.99i)6-s + (1.17 − 2.03i)7-s + (1.46 + 2.42i)8-s + (2.63 − 1.43i)9-s + (0.226 − 0.107i)10-s + (−0.340 + 0.0913i)11-s + (−0.305 − 3.45i)12-s + (−1.49 − 0.399i)13-s + (0.598 + 3.26i)14-s + (−0.306 − 0.00382i)15-s + (−3.79 − 1.26i)16-s + 3.58i·17-s + ⋯ |
L(s) = 1 | + (−0.761 + 0.647i)2-s + (0.969 − 0.246i)3-s + (0.160 − 0.987i)4-s + (−0.0764 − 0.0204i)5-s + (−0.578 + 0.815i)6-s + (0.443 − 0.768i)7-s + (0.517 + 0.855i)8-s + (0.878 − 0.478i)9-s + (0.0715 − 0.0339i)10-s + (−0.102 + 0.0275i)11-s + (−0.0880 − 0.996i)12-s + (−0.413 − 0.110i)13-s + (0.160 + 0.873i)14-s + (−0.0791 − 0.000988i)15-s + (−0.948 − 0.316i)16-s + 0.868i·17-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(0.991−0.132i)Λ(2−s)
Λ(s)=(=(144s/2ΓC(s+1/2)L(s)(0.991−0.132i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
0.991−0.132i
|
Analytic conductor: |
1.14984 |
Root analytic conductor: |
1.07230 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1/2), 0.991−0.132i)
|
Particular Values
L(1) |
≈ |
1.05864+0.0703719i |
L(21) |
≈ |
1.05864+0.0703719i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.07−0.916i)T |
| 3 | 1+(−1.67+0.427i)T |
good | 5 | 1+(0.170+0.0458i)T+(4.33+2.5i)T2 |
| 7 | 1+(−1.17+2.03i)T+(−3.5−6.06i)T2 |
| 11 | 1+(0.340−0.0913i)T+(9.52−5.5i)T2 |
| 13 | 1+(1.49+0.399i)T+(11.2+6.5i)T2 |
| 17 | 1−3.58iT−17T2 |
| 19 | 1+(−5.36−5.36i)T+19iT2 |
| 23 | 1+(−0.165+0.0953i)T+(11.5−19.9i)T2 |
| 29 | 1+(9.10−2.43i)T+(25.1−14.5i)T2 |
| 31 | 1+(3.43−1.98i)T+(15.5−26.8i)T2 |
| 37 | 1+(3.28+3.28i)T+37iT2 |
| 41 | 1+(4.25+7.37i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−1.09−4.09i)T+(−37.2+21.5i)T2 |
| 47 | 1+(−4.93+8.53i)T+(−23.5−40.7i)T2 |
| 53 | 1+(4.83−4.83i)T−53iT2 |
| 59 | 1+(0.720−2.68i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−2.13−7.97i)T+(−52.8+30.5i)T2 |
| 67 | 1+(3.06−11.4i)T+(−58.0−33.5i)T2 |
| 71 | 1−1.13iT−71T2 |
| 73 | 1+5.67iT−73T2 |
| 79 | 1+(−12.8−7.42i)T+(39.5+68.4i)T2 |
| 83 | 1+(3.31+12.3i)T+(−71.8+41.5i)T2 |
| 89 | 1−3.05T+89T2 |
| 97 | 1+(0.996−1.72i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.50287055351023921067931358826, −12.15631270372261387263129552336, −10.67742863554048508224456721445, −9.868997182241823847297747865005, −8.797861062741152124770885230439, −7.73044010056297975789014413082, −7.24889233642238225958545710451, −5.62350172824571111955628803289, −3.88255319808369016891371714270, −1.70112376159042157314701772551,
2.12382356680289453530598186440, 3.35550892050438307896237433282, 4.97746858154872983542807247827, 7.23364026890578226585867385603, 8.003498210119450136105467790288, 9.277740402699432728755930817001, 9.550159359149155262550260104818, 11.08318753361510630391886489279, 11.83294173994983227124013242282, 13.05850556389694420787965853921