L(s) = 1 | + (1.29 + 0.571i)2-s + (1.61 + 0.632i)3-s + (1.34 + 1.47i)4-s + (−3.81 − 1.02i)5-s + (1.72 + 1.73i)6-s + (1.46 − 2.54i)7-s + (0.897 + 2.68i)8-s + (2.20 + 2.03i)9-s + (−4.35 − 3.50i)10-s + (−2.65 + 0.710i)11-s + (1.23 + 3.23i)12-s + (−2.34 − 0.628i)13-s + (3.34 − 2.44i)14-s + (−5.50 − 4.05i)15-s + (−0.370 + 3.98i)16-s − 2.89i·17-s + ⋯ |
L(s) = 1 | + (0.914 + 0.404i)2-s + (0.931 + 0.364i)3-s + (0.673 + 0.739i)4-s + (−1.70 − 0.457i)5-s + (0.704 + 0.709i)6-s + (0.554 − 0.960i)7-s + (0.317 + 0.948i)8-s + (0.733 + 0.679i)9-s + (−1.37 − 1.10i)10-s + (−0.799 + 0.214i)11-s + (0.357 + 0.933i)12-s + (−0.651 − 0.174i)13-s + (0.895 − 0.654i)14-s + (−1.42 − 1.04i)15-s + (−0.0926 + 0.995i)16-s − 0.702i·17-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(0.773−0.634i)Λ(2−s)
Λ(s)=(=(144s/2ΓC(s+1/2)L(s)(0.773−0.634i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
0.773−0.634i
|
Analytic conductor: |
1.14984 |
Root analytic conductor: |
1.07230 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1/2), 0.773−0.634i)
|
Particular Values
L(1) |
≈ |
1.77524+0.635156i |
L(21) |
≈ |
1.77524+0.635156i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.29−0.571i)T |
| 3 | 1+(−1.61−0.632i)T |
good | 5 | 1+(3.81+1.02i)T+(4.33+2.5i)T2 |
| 7 | 1+(−1.46+2.54i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.65−0.710i)T+(9.52−5.5i)T2 |
| 13 | 1+(2.34+0.628i)T+(11.2+6.5i)T2 |
| 17 | 1+2.89iT−17T2 |
| 19 | 1+(1.99+1.99i)T+19iT2 |
| 23 | 1+(2.07−1.19i)T+(11.5−19.9i)T2 |
| 29 | 1+(−8.46+2.26i)T+(25.1−14.5i)T2 |
| 31 | 1+(0.439−0.253i)T+(15.5−26.8i)T2 |
| 37 | 1+(−1.36−1.36i)T+37iT2 |
| 41 | 1+(−0.745−1.29i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.27+4.74i)T+(−37.2+21.5i)T2 |
| 47 | 1+(3.25−5.64i)T+(−23.5−40.7i)T2 |
| 53 | 1+(5.17−5.17i)T−53iT2 |
| 59 | 1+(−0.664+2.48i)T+(−51.0−29.5i)T2 |
| 61 | 1+(−2.99−11.1i)T+(−52.8+30.5i)T2 |
| 67 | 1+(2.53−9.46i)T+(−58.0−33.5i)T2 |
| 71 | 1+4.65iT−71T2 |
| 73 | 1+4.91iT−73T2 |
| 79 | 1+(3.61+2.08i)T+(39.5+68.4i)T2 |
| 83 | 1+(3.37+12.5i)T+(−71.8+41.5i)T2 |
| 89 | 1−7.33T+89T2 |
| 97 | 1+(−2.50+4.33i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.35544602894622044789372006403, −12.38921431530749556391083501039, −11.40478659877830966357023230878, −10.35769455047537554073299732531, −8.548601935709044981514318880098, −7.73017987938720358193325050357, −7.25245726897586127699843204300, −4.75235427763111666637388792024, −4.33382300673844370710336729015, −2.97727661325286391428365372281,
2.41033730974772165315687865063, 3.57342939362066295035939197062, 4.77668404615218155215088841665, 6.55725426144147564296018633789, 7.78191892564883643085714682129, 8.466373657827303956257798950755, 10.19549023746345024070051805137, 11.31401335283142057465920935182, 12.21451862341120209674797121093, 12.71578746998853462301854063135