L(s) = 1 | + (0.688 − 1.23i)2-s + (1.10 + 1.33i)3-s + (−1.05 − 1.70i)4-s + (0.664 + 0.178i)5-s + (2.40 − 0.446i)6-s + (0.645 − 1.11i)7-s + (−2.82 + 0.129i)8-s + (−0.559 + 2.94i)9-s + (0.677 − 0.698i)10-s + (3.21 − 0.860i)11-s + (1.10 − 3.28i)12-s + (−4.74 − 1.27i)13-s + (−0.937 − 1.56i)14-s + (0.496 + 1.08i)15-s + (−1.78 + 3.57i)16-s + 5.58i·17-s + ⋯ |
L(s) = 1 | + (0.486 − 0.873i)2-s + (0.637 + 0.770i)3-s + (−0.526 − 0.850i)4-s + (0.297 + 0.0796i)5-s + (0.983 − 0.182i)6-s + (0.244 − 0.422i)7-s + (−0.998 + 0.0456i)8-s + (−0.186 + 0.982i)9-s + (0.214 − 0.220i)10-s + (0.968 − 0.259i)11-s + (0.319 − 0.947i)12-s + (−1.31 − 0.352i)13-s + (−0.250 − 0.418i)14-s + (0.128 + 0.279i)15-s + (−0.446 + 0.894i)16-s + 1.35i·17-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(0.768+0.639i)Λ(2−s)
Λ(s)=(=(144s/2ΓC(s+1/2)L(s)(0.768+0.639i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
0.768+0.639i
|
Analytic conductor: |
1.14984 |
Root analytic conductor: |
1.07230 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1/2), 0.768+0.639i)
|
Particular Values
L(1) |
≈ |
1.49754−0.541483i |
L(21) |
≈ |
1.49754−0.541483i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.688+1.23i)T |
| 3 | 1+(−1.10−1.33i)T |
good | 5 | 1+(−0.664−0.178i)T+(4.33+2.5i)T2 |
| 7 | 1+(−0.645+1.11i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−3.21+0.860i)T+(9.52−5.5i)T2 |
| 13 | 1+(4.74+1.27i)T+(11.2+6.5i)T2 |
| 17 | 1−5.58iT−17T2 |
| 19 | 1+(2.49+2.49i)T+19iT2 |
| 23 | 1+(2.36−1.36i)T+(11.5−19.9i)T2 |
| 29 | 1+(2.95−0.792i)T+(25.1−14.5i)T2 |
| 31 | 1+(−5.28+3.04i)T+(15.5−26.8i)T2 |
| 37 | 1+(−0.507−0.507i)T+37iT2 |
| 41 | 1+(−4.89−8.48i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−0.254−0.949i)T+(−37.2+21.5i)T2 |
| 47 | 1+(−6.13+10.6i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.601−0.601i)T−53iT2 |
| 59 | 1+(−1.28+4.77i)T+(−51.0−29.5i)T2 |
| 61 | 1+(2.90+10.8i)T+(−52.8+30.5i)T2 |
| 67 | 1+(0.0295−0.110i)T+(−58.0−33.5i)T2 |
| 71 | 1+0.0447iT−71T2 |
| 73 | 1+13.2iT−73T2 |
| 79 | 1+(−2.50−1.44i)T+(39.5+68.4i)T2 |
| 83 | 1+(−1.01−3.79i)T+(−71.8+41.5i)T2 |
| 89 | 1−12.7T+89T2 |
| 97 | 1+(−4.41+7.63i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.09922210061007790673499406167, −11.92988062322418391378699187557, −10.83707118560808245556092244499, −10.02876946704864467798938227619, −9.239712029860852839445584968349, −7.996993520319502246536579363900, −6.13134889517005725772449292194, −4.68994559020438820420859011833, −3.74430714208859079142474023266, −2.20246958531668556763664102473,
2.45300818335388549102721879228, 4.21175919832984363082146953782, 5.70253716562732335634887128064, 6.88721959833471951344045816538, 7.67009910976264429980881239450, 8.915127787997026031688704716346, 9.595926219028649090517333322523, 11.93024414738925937920834358571, 12.22272049219969137843581302174, 13.48427112854635897038813299989