L(s) = 1 | + (−1.39 + 0.225i)2-s + (−1.36 + 1.05i)3-s + (1.89 − 0.628i)4-s + (−2.78 − 0.746i)5-s + (1.67 − 1.78i)6-s + (1.16 − 2.02i)7-s + (−2.50 + 1.30i)8-s + (0.753 − 2.90i)9-s + (4.05 + 0.415i)10-s + (5.53 − 1.48i)11-s + (−1.93 + 2.87i)12-s + (−3.90 − 1.04i)13-s + (−1.17 + 3.08i)14-s + (4.60 − 1.93i)15-s + (3.20 − 2.38i)16-s − 6.45i·17-s + ⋯ |
L(s) = 1 | + (−0.987 + 0.159i)2-s + (−0.790 + 0.611i)3-s + (0.949 − 0.314i)4-s + (−1.24 − 0.333i)5-s + (0.683 − 0.730i)6-s + (0.440 − 0.763i)7-s + (−0.887 + 0.461i)8-s + (0.251 − 0.967i)9-s + (1.28 + 0.131i)10-s + (1.67 − 0.447i)11-s + (−0.558 + 0.829i)12-s + (−1.08 − 0.290i)13-s + (−0.313 + 0.824i)14-s + (1.19 − 0.498i)15-s + (0.802 − 0.596i)16-s − 1.56i·17-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(0.335+0.942i)Λ(2−s)
Λ(s)=(=(144s/2ΓC(s+1/2)L(s)(0.335+0.942i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
0.335+0.942i
|
Analytic conductor: |
1.14984 |
Root analytic conductor: |
1.07230 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1/2), 0.335+0.942i)
|
Particular Values
L(1) |
≈ |
0.323110−0.227916i |
L(21) |
≈ |
0.323110−0.227916i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.39−0.225i)T |
| 3 | 1+(1.36−1.05i)T |
good | 5 | 1+(2.78+0.746i)T+(4.33+2.5i)T2 |
| 7 | 1+(−1.16+2.02i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−5.53+1.48i)T+(9.52−5.5i)T2 |
| 13 | 1+(3.90+1.04i)T+(11.2+6.5i)T2 |
| 17 | 1+6.45iT−17T2 |
| 19 | 1+(1.50+1.50i)T+19iT2 |
| 23 | 1+(0.0418−0.0241i)T+(11.5−19.9i)T2 |
| 29 | 1+(5.08−1.36i)T+(25.1−14.5i)T2 |
| 31 | 1+(1.65−0.952i)T+(15.5−26.8i)T2 |
| 37 | 1+(−0.489−0.489i)T+37iT2 |
| 41 | 1+(−0.0155−0.0269i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.01+3.80i)T+(−37.2+21.5i)T2 |
| 47 | 1+(−0.0913+0.158i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−6.62+6.62i)T−53iT2 |
| 59 | 1+(−1.11+4.15i)T+(−51.0−29.5i)T2 |
| 61 | 1+(1.71+6.39i)T+(−52.8+30.5i)T2 |
| 67 | 1+(−0.216+0.808i)T+(−58.0−33.5i)T2 |
| 71 | 1+1.04iT−71T2 |
| 73 | 1−4.74iT−73T2 |
| 79 | 1+(−7.29−4.21i)T+(39.5+68.4i)T2 |
| 83 | 1+(−3.20−11.9i)T+(−71.8+41.5i)T2 |
| 89 | 1−2.85T+89T2 |
| 97 | 1+(−3.29+5.71i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.25400500492880877235881242893, −11.58165520080672154269828111604, −11.03359427719893126090852289885, −9.747838399369550712318145221957, −8.892535742127168504410794089005, −7.53187640281573920414744191821, −6.76285174057287760833573620927, −5.04707143667454557275566780735, −3.76751611932508054265942669089, −0.60872501127766903055681199334,
1.86300766391380955148194981557, 4.07602121879338611532859137857, 6.06162321454245023108288229394, 7.11546558744579052614661711187, 7.931022686598030205387250419296, 9.042537297281798947547978581241, 10.43050443944445927597160885766, 11.53567641687946449563194226079, 11.91140523949891595102773207439, 12.62013631044794417291694662464