L(s) = 1 | + (−1.39 + 0.225i)2-s + (−1.36 + 1.05i)3-s + (1.89 − 0.628i)4-s + (−2.78 − 0.746i)5-s + (1.67 − 1.78i)6-s + (1.16 − 2.02i)7-s + (−2.50 + 1.30i)8-s + (0.753 − 2.90i)9-s + (4.05 + 0.415i)10-s + (5.53 − 1.48i)11-s + (−1.93 + 2.87i)12-s + (−3.90 − 1.04i)13-s + (−1.17 + 3.08i)14-s + (4.60 − 1.93i)15-s + (3.20 − 2.38i)16-s − 6.45i·17-s + ⋯ |
L(s) = 1 | + (−0.987 + 0.159i)2-s + (−0.790 + 0.611i)3-s + (0.949 − 0.314i)4-s + (−1.24 − 0.333i)5-s + (0.683 − 0.730i)6-s + (0.440 − 0.763i)7-s + (−0.887 + 0.461i)8-s + (0.251 − 0.967i)9-s + (1.28 + 0.131i)10-s + (1.67 − 0.447i)11-s + (−0.558 + 0.829i)12-s + (−1.08 − 0.290i)13-s + (−0.313 + 0.824i)14-s + (1.19 − 0.498i)15-s + (0.802 − 0.596i)16-s − 1.56i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.335 + 0.942i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.335 + 0.942i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.323110 - 0.227916i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.323110 - 0.227916i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 - 0.225i)T \) |
| 3 | \( 1 + (1.36 - 1.05i)T \) |
good | 5 | \( 1 + (2.78 + 0.746i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-1.16 + 2.02i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.53 + 1.48i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (3.90 + 1.04i)T + (11.2 + 6.5i)T^{2} \) |
| 17 | \( 1 + 6.45iT - 17T^{2} \) |
| 19 | \( 1 + (1.50 + 1.50i)T + 19iT^{2} \) |
| 23 | \( 1 + (0.0418 - 0.0241i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (5.08 - 1.36i)T + (25.1 - 14.5i)T^{2} \) |
| 31 | \( 1 + (1.65 - 0.952i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.489 - 0.489i)T + 37iT^{2} \) |
| 41 | \( 1 + (-0.0155 - 0.0269i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.01 + 3.80i)T + (-37.2 + 21.5i)T^{2} \) |
| 47 | \( 1 + (-0.0913 + 0.158i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-6.62 + 6.62i)T - 53iT^{2} \) |
| 59 | \( 1 + (-1.11 + 4.15i)T + (-51.0 - 29.5i)T^{2} \) |
| 61 | \( 1 + (1.71 + 6.39i)T + (-52.8 + 30.5i)T^{2} \) |
| 67 | \( 1 + (-0.216 + 0.808i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 1.04iT - 71T^{2} \) |
| 73 | \( 1 - 4.74iT - 73T^{2} \) |
| 79 | \( 1 + (-7.29 - 4.21i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.20 - 11.9i)T + (-71.8 + 41.5i)T^{2} \) |
| 89 | \( 1 - 2.85T + 89T^{2} \) |
| 97 | \( 1 + (-3.29 + 5.71i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.25400500492880877235881242893, −11.58165520080672154269828111604, −11.03359427719893126090852289885, −9.747838399369550712318145221957, −8.892535742127168504410794089005, −7.53187640281573920414744191821, −6.76285174057287760833573620927, −5.04707143667454557275566780735, −3.76751611932508054265942669089, −0.60872501127766903055681199334,
1.86300766391380955148194981557, 4.07602121879338611532859137857, 6.06162321454245023108288229394, 7.11546558744579052614661711187, 7.931022686598030205387250419296, 9.042537297281798947547978581241, 10.43050443944445927597160885766, 11.53567641687946449563194226079, 11.91140523949891595102773207439, 12.62013631044794417291694662464