L(s) = 1 | + (1.04 + 0.948i)2-s + (−1.13 + 1.31i)3-s + (0.199 + 1.98i)4-s + (0.00302 + 0.0112i)5-s + (−2.43 + 0.300i)6-s + (−1.05 + 0.610i)7-s + (−1.67 + 2.27i)8-s + (−0.435 − 2.96i)9-s + (−0.00753 + 0.0147i)10-s + (1.83 + 0.490i)11-s + (−2.83 − 1.99i)12-s + (5.06 − 1.35i)13-s + (−1.68 − 0.362i)14-s + (−0.0182 − 0.00881i)15-s + (−3.92 + 0.795i)16-s − 1.54·17-s + ⋯ |
L(s) = 1 | + (0.741 + 0.670i)2-s + (−0.653 + 0.756i)3-s + (0.0999 + 0.994i)4-s + (0.00135 + 0.00504i)5-s + (−0.992 + 0.122i)6-s + (−0.399 + 0.230i)7-s + (−0.593 + 0.804i)8-s + (−0.145 − 0.989i)9-s + (−0.00238 + 0.00465i)10-s + (0.551 + 0.147i)11-s + (−0.818 − 0.574i)12-s + (1.40 − 0.376i)13-s + (−0.451 − 0.0970i)14-s + (−0.00470 − 0.00227i)15-s + (−0.980 + 0.198i)16-s − 0.374·17-s + ⋯ |
Λ(s)=(=(144s/2ΓC(s)L(s)(−0.379−0.925i)Λ(2−s)
Λ(s)=(=(144s/2ΓC(s+1/2)L(s)(−0.379−0.925i)Λ(1−s)
Degree: |
2 |
Conductor: |
144
= 24⋅32
|
Sign: |
−0.379−0.925i
|
Analytic conductor: |
1.14984 |
Root analytic conductor: |
1.07230 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ144(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 144, ( :1/2), −0.379−0.925i)
|
Particular Values
L(1) |
≈ |
0.721276+1.07591i |
L(21) |
≈ |
0.721276+1.07591i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.04−0.948i)T |
| 3 | 1+(1.13−1.31i)T |
good | 5 | 1+(−0.00302−0.0112i)T+(−4.33+2.5i)T2 |
| 7 | 1+(1.05−0.610i)T+(3.5−6.06i)T2 |
| 11 | 1+(−1.83−0.490i)T+(9.52+5.5i)T2 |
| 13 | 1+(−5.06+1.35i)T+(11.2−6.5i)T2 |
| 17 | 1+1.54T+17T2 |
| 19 | 1+(−4.06−4.06i)T+19iT2 |
| 23 | 1+(5.20+3.00i)T+(11.5+19.9i)T2 |
| 29 | 1+(−0.798+2.98i)T+(−25.1−14.5i)T2 |
| 31 | 1+(−2.92+5.07i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−0.923+0.923i)T−37iT2 |
| 41 | 1+(3.20+1.85i)T+(20.5+35.5i)T2 |
| 43 | 1+(4.84+1.29i)T+(37.2+21.5i)T2 |
| 47 | 1+(1.31+2.27i)T+(−23.5+40.7i)T2 |
| 53 | 1+(8.88−8.88i)T−53iT2 |
| 59 | 1+(−2.35−8.78i)T+(−51.0+29.5i)T2 |
| 61 | 1+(−3.24+12.1i)T+(−52.8−30.5i)T2 |
| 67 | 1+(11.8−3.18i)T+(58.0−33.5i)T2 |
| 71 | 1+14.2iT−71T2 |
| 73 | 1−4.32iT−73T2 |
| 79 | 1+(0.261+0.453i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−2.91+10.8i)T+(−71.8−41.5i)T2 |
| 89 | 1−10.7iT−89T2 |
| 97 | 1+(−8.78−15.2i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.52145879843990760199229253939, −12.34690209515854284634536661300, −11.65401458380039595573840310815, −10.48197708543895387968390540602, −9.227494574013062126411398740612, −8.108053594063796241800326016155, −6.43602887372083957141686932922, −5.89025309558422299803301251706, −4.46335790020508748019976614957, −3.40021891608268219640152799252,
1.37937119597792766440501865919, 3.36057641070113924390476422480, 4.92729158963637660332567442475, 6.20333377200019114911762274731, 6.93582331065155197178678150889, 8.719408905625572990428553925704, 10.05648929861357108131815245791, 11.24529584389976008216714045658, 11.65806428269807100365027874102, 12.88061824634386302788117821528