L(s) = 1 | − 8.64·2-s + 10.2·3-s + 42.7·4-s + 92.1·5-s − 88.9·6-s + 2.86·7-s − 93.3·8-s − 137.·9-s − 797.·10-s + 571.·11-s + 440.·12-s + 169·13-s − 24.7·14-s + 948.·15-s − 561.·16-s − 855.·17-s + 1.18e3·18-s − 2.35e3·19-s + 3.94e3·20-s + 29.4·21-s − 4.94e3·22-s + 2.50e3·23-s − 960.·24-s + 5.37e3·25-s − 1.46e3·26-s − 3.91e3·27-s + 122.·28-s + ⋯ |
L(s) = 1 | − 1.52·2-s + 0.659·3-s + 1.33·4-s + 1.64·5-s − 1.00·6-s + 0.0220·7-s − 0.515·8-s − 0.564·9-s − 2.52·10-s + 1.42·11-s + 0.882·12-s + 0.277·13-s − 0.0337·14-s + 1.08·15-s − 0.548·16-s − 0.718·17-s + 0.863·18-s − 1.49·19-s + 2.20·20-s + 0.0145·21-s − 2.17·22-s + 0.989·23-s − 0.340·24-s + 1.71·25-s − 0.424·26-s − 1.03·27-s + 0.0295·28-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(13s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
0.9240266662 |
L(21) |
≈ |
0.9240266662 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1−169T |
good | 2 | 1+8.64T+32T2 |
| 3 | 1−10.2T+243T2 |
| 5 | 1−92.1T+3.12e3T2 |
| 7 | 1−2.86T+1.68e4T2 |
| 11 | 1−571.T+1.61e5T2 |
| 17 | 1+855.T+1.41e6T2 |
| 19 | 1+2.35e3T+2.47e6T2 |
| 23 | 1−2.50e3T+6.43e6T2 |
| 29 | 1+5.49e3T+2.05e7T2 |
| 31 | 1+144.T+2.86e7T2 |
| 37 | 1+515.T+6.93e7T2 |
| 41 | 1+1.39e4T+1.15e8T2 |
| 43 | 1−7.75e3T+1.47e8T2 |
| 47 | 1−8.34e3T+2.29e8T2 |
| 53 | 1+5.97e3T+4.18e8T2 |
| 59 | 1−2.11e3T+7.14e8T2 |
| 61 | 1+1.73e4T+8.44e8T2 |
| 67 | 1+3.12e3T+1.35e9T2 |
| 71 | 1−4.33e4T+1.80e9T2 |
| 73 | 1−6.80e3T+2.07e9T2 |
| 79 | 1+1.28e3T+3.07e9T2 |
| 83 | 1−7.14e3T+3.93e9T2 |
| 89 | 1−1.07e5T+5.58e9T2 |
| 97 | 1−4.24e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.78632808004585341088647532785, −17.33881633245751868208960812130, −16.99881254617018815196141544414, −14.72974340089338398002793793521, −13.43842315411327882951041609900, −10.94201047970936418269581319864, −9.402071326705819612755137670060, −8.753036729332002384396808079993, −6.49233416537680245637163048603, −1.90911682477042387799092390305,
1.90911682477042387799092390305, 6.49233416537680245637163048603, 8.753036729332002384396808079993, 9.402071326705819612755137670060, 10.94201047970936418269581319864, 13.43842315411327882951041609900, 14.72974340089338398002793793521, 16.99881254617018815196141544414, 17.33881633245751868208960812130, 18.78632808004585341088647532785