L(s) = 1 | + (−29.6 + 17.1i)2-s + (−132. − 228. i)3-s + (330. − 571. i)4-s − 402. i·5-s + (7.82e3 + 4.51e3i)6-s + (−8.11e3 − 4.68e3i)7-s + 5.06e3i·8-s + (−2.50e4 + 4.33e4i)9-s + (6.88e3 + 1.19e4i)10-s + (1.54e4 − 8.90e3i)11-s − 1.74e5·12-s + (7.06e4 + 7.49e4i)13-s + 3.20e5·14-s + (−9.19e4 + 5.31e4i)15-s + (8.22e4 + 1.42e5i)16-s + (2.32e4 − 4.03e4i)17-s + ⋯ |
L(s) = 1 | + (−1.31 + 0.756i)2-s + (−0.940 − 1.62i)3-s + (0.644 − 1.11i)4-s − 0.287i·5-s + (2.46 + 1.42i)6-s + (−1.27 − 0.737i)7-s + 0.437i·8-s + (−1.27 + 2.20i)9-s + (0.217 + 0.377i)10-s + (0.317 − 0.183i)11-s − 2.42·12-s + (0.686 + 0.727i)13-s + 2.23·14-s + (−0.469 + 0.270i)15-s + (0.313 + 0.543i)16-s + (0.0675 − 0.117i)17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(−0.218−0.975i)Λ(10−s)
Λ(s)=(=(13s/2ΓC(s+9/2)L(s)(−0.218−0.975i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
−0.218−0.975i
|
Analytic conductor: |
6.69546 |
Root analytic conductor: |
2.58755 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :9/2), −0.218−0.975i)
|
Particular Values
L(5) |
≈ |
0.0359908+0.0449199i |
L(21) |
≈ |
0.0359908+0.0449199i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−7.06e4−7.49e4i)T |
good | 2 | 1+(29.6−17.1i)T+(256−443.i)T2 |
| 3 | 1+(132.+228.i)T+(−9.84e3+1.70e4i)T2 |
| 5 | 1+402.iT−1.95e6T2 |
| 7 | 1+(8.11e3+4.68e3i)T+(2.01e7+3.49e7i)T2 |
| 11 | 1+(−1.54e4+8.90e3i)T+(1.17e9−2.04e9i)T2 |
| 17 | 1+(−2.32e4+4.03e4i)T+(−5.92e10−1.02e11i)T2 |
| 19 | 1+(2.51e5+1.45e5i)T+(1.61e11+2.79e11i)T2 |
| 23 | 1+(8.16e5+1.41e6i)T+(−9.00e11+1.55e12i)T2 |
| 29 | 1+(1.75e5+3.04e5i)T+(−7.25e12+1.25e13i)T2 |
| 31 | 1−6.33e6iT−2.64e13T2 |
| 37 | 1+(1.06e7−6.13e6i)T+(6.49e13−1.12e14i)T2 |
| 41 | 1+(2.52e6−1.45e6i)T+(1.63e14−2.83e14i)T2 |
| 43 | 1+(2.83e6−4.90e6i)T+(−2.51e14−4.35e14i)T2 |
| 47 | 1+1.35e7iT−1.11e15T2 |
| 53 | 1−5.34e7T+3.29e15T2 |
| 59 | 1+(8.14e7+4.70e7i)T+(4.33e15+7.50e15i)T2 |
| 61 | 1+(7.82e7−1.35e8i)T+(−5.84e15−1.01e16i)T2 |
| 67 | 1+(1.50e8−8.71e7i)T+(1.36e16−2.35e16i)T2 |
| 71 | 1+(9.79e6+5.65e6i)T+(2.29e16+3.97e16i)T2 |
| 73 | 1+8.79e7iT−5.88e16T2 |
| 79 | 1−3.00e8T+1.19e17T2 |
| 83 | 1−7.05e8iT−1.86e17T2 |
| 89 | 1+(4.64e8−2.68e8i)T+(1.75e17−3.03e17i)T2 |
| 97 | 1+(−1.94e8−1.12e8i)T+(3.80e17+6.58e17i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.03865138829707888978788380080, −16.76792020939973398655779558065, −16.37625818387532477987134223569, −13.61727289263345745862411726835, −12.40409790227170641348701802264, −10.58828017876137512725163920891, −8.620191658711198375596086383097, −6.97849885225450933537466177701, −6.36686800313681186165959894170, −1.12466446186515263852269366091,
0.06532031699282949588703967749, 3.35588321488004131645965664097, 5.88947573333368248204089138617, 9.007971184333308046999869904463, 9.934382566076870518194725668338, 10.88817123122628854886415716231, 12.16984685162834603591955314793, 15.23648408485991098899234634876, 16.26239877014758169029201210049, 17.32531430225017745395516626199