L(s) = 1 | + (17.5 − 10.1i)2-s + (49.6 + 86.0i)3-s + (−50.8 + 88.0i)4-s + 1.79e3i·5-s + (1.74e3 + 1.00e3i)6-s + (−1.67e3 − 967. i)7-s + 1.24e4i·8-s + (4.91e3 − 8.50e3i)9-s + (1.82e4 + 3.15e4i)10-s + (4.64e4 − 2.68e4i)11-s − 1.00e4·12-s + (1.53e3 + 1.02e5i)13-s − 3.92e4·14-s + (−1.54e5 + 8.93e4i)15-s + (9.98e4 + 1.72e5i)16-s + (1.98e5 − 3.43e5i)17-s + ⋯ |
L(s) = 1 | + (0.775 − 0.447i)2-s + (0.353 + 0.613i)3-s + (−0.0992 + 0.171i)4-s + 1.28i·5-s + (0.548 + 0.316i)6-s + (−0.263 − 0.152i)7-s + 1.07i·8-s + (0.249 − 0.432i)9-s + (0.576 + 0.998i)10-s + (0.957 − 0.552i)11-s − 0.140·12-s + (0.0149 + 0.999i)13-s − 0.272·14-s + (−0.789 + 0.455i)15-s + (0.380 + 0.659i)16-s + (0.575 − 0.996i)17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(0.498−0.867i)Λ(10−s)
Λ(s)=(=(13s/2ΓC(s+9/2)L(s)(0.498−0.867i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
0.498−0.867i
|
Analytic conductor: |
6.69546 |
Root analytic conductor: |
2.58755 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :9/2), 0.498−0.867i)
|
Particular Values
L(5) |
≈ |
2.13576+1.23610i |
L(21) |
≈ |
2.13576+1.23610i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−1.53e3−1.02e5i)T |
good | 2 | 1+(−17.5+10.1i)T+(256−443.i)T2 |
| 3 | 1+(−49.6−86.0i)T+(−9.84e3+1.70e4i)T2 |
| 5 | 1−1.79e3iT−1.95e6T2 |
| 7 | 1+(1.67e3+967.i)T+(2.01e7+3.49e7i)T2 |
| 11 | 1+(−4.64e4+2.68e4i)T+(1.17e9−2.04e9i)T2 |
| 17 | 1+(−1.98e5+3.43e5i)T+(−5.92e10−1.02e11i)T2 |
| 19 | 1+(4.35e5+2.51e5i)T+(1.61e11+2.79e11i)T2 |
| 23 | 1+(5.98e5+1.03e6i)T+(−9.00e11+1.55e12i)T2 |
| 29 | 1+(−2.44e6−4.23e6i)T+(−7.25e12+1.25e13i)T2 |
| 31 | 1−2.72e6iT−2.64e13T2 |
| 37 | 1+(−5.29e6+3.05e6i)T+(6.49e13−1.12e14i)T2 |
| 41 | 1+(−2.28e7+1.31e7i)T+(1.63e14−2.83e14i)T2 |
| 43 | 1+(−8.62e6+1.49e7i)T+(−2.51e14−4.35e14i)T2 |
| 47 | 1−1.60e7iT−1.11e15T2 |
| 53 | 1+4.91e7T+3.29e15T2 |
| 59 | 1+(−4.20e7−2.42e7i)T+(4.33e15+7.50e15i)T2 |
| 61 | 1+(6.58e7−1.13e8i)T+(−5.84e15−1.01e16i)T2 |
| 67 | 1+(−1.08e8+6.27e7i)T+(1.36e16−2.35e16i)T2 |
| 71 | 1+(2.59e8+1.50e8i)T+(2.29e16+3.97e16i)T2 |
| 73 | 1+2.58e8iT−5.88e16T2 |
| 79 | 1−8.39e7T+1.19e17T2 |
| 83 | 1−3.52e8iT−1.86e17T2 |
| 89 | 1+(9.87e8−5.70e8i)T+(1.75e17−3.03e17i)T2 |
| 97 | 1+(−1.20e9−6.95e8i)T+(3.80e17+6.58e17i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.06024108737122654753627674293, −16.36374141568508519001833085818, −14.59541987219427089310110095279, −14.06104264058391999902159098262, −12.15509077812315234236770069335, −10.81380272556161080379640685687, −9.089341505560391481275122465010, −6.71752363264388211156255735227, −4.13879548444323766298831068957, −2.94707842734536605108552284126,
1.24618016669424069828012787539, 4.35872015339458809919735330603, 6.01243077329158026047139753416, 8.028917077045440777336303530146, 9.771396616052600588332256376497, 12.52736044967245567091511105964, 13.09670915388072914942712160636, 14.53296616471286558187931271811, 15.88376795600529753958998267596, 17.27005423546639201265533939282