L(s) = 1 | + (31.7 − 18.3i)2-s + (65.0 + 112. i)3-s + (417. − 722. i)4-s − 1.41e3i·5-s + (4.13e3 + 2.38e3i)6-s + (6.50e3 + 3.75e3i)7-s − 1.18e4i·8-s + (1.38e3 − 2.40e3i)9-s + (−2.60e4 − 4.50e4i)10-s + (−3.71e4 + 2.14e4i)11-s + 1.08e5·12-s + (−1.00e5 − 2.10e4i)13-s + 2.75e5·14-s + (1.59e5 − 9.21e4i)15-s + (−3.47e3 − 6.01e3i)16-s + (−2.67e5 + 4.63e5i)17-s + ⋯ |
L(s) = 1 | + (1.40 − 0.810i)2-s + (0.463 + 0.802i)3-s + (0.814 − 1.41i)4-s − 1.01i·5-s + (1.30 + 0.751i)6-s + (1.02 + 0.590i)7-s − 1.02i·8-s + (0.0705 − 0.122i)9-s + (−0.822 − 1.42i)10-s + (−0.764 + 0.441i)11-s + 1.51·12-s + (−0.978 − 0.204i)13-s + 1.91·14-s + (0.814 − 0.470i)15-s + (−0.0132 − 0.0229i)16-s + (−0.777 + 1.34i)17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(0.736+0.676i)Λ(10−s)
Λ(s)=(=(13s/2ΓC(s+9/2)L(s)(0.736+0.676i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
0.736+0.676i
|
Analytic conductor: |
6.69546 |
Root analytic conductor: |
2.58755 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :9/2), 0.736+0.676i)
|
Particular Values
L(5) |
≈ |
3.52738−1.37292i |
L(21) |
≈ |
3.52738−1.37292i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(1.00e5+2.10e4i)T |
good | 2 | 1+(−31.7+18.3i)T+(256−443.i)T2 |
| 3 | 1+(−65.0−112.i)T+(−9.84e3+1.70e4i)T2 |
| 5 | 1+1.41e3iT−1.95e6T2 |
| 7 | 1+(−6.50e3−3.75e3i)T+(2.01e7+3.49e7i)T2 |
| 11 | 1+(3.71e4−2.14e4i)T+(1.17e9−2.04e9i)T2 |
| 17 | 1+(2.67e5−4.63e5i)T+(−5.92e10−1.02e11i)T2 |
| 19 | 1+(3.62e5+2.09e5i)T+(1.61e11+2.79e11i)T2 |
| 23 | 1+(−1.47e5−2.55e5i)T+(−9.00e11+1.55e12i)T2 |
| 29 | 1+(8.10e5+1.40e6i)T+(−7.25e12+1.25e13i)T2 |
| 31 | 1+3.25e6iT−2.64e13T2 |
| 37 | 1+(1.73e7−1.00e7i)T+(6.49e13−1.12e14i)T2 |
| 41 | 1+(−2.98e7+1.72e7i)T+(1.63e14−2.83e14i)T2 |
| 43 | 1+(−1.56e6+2.71e6i)T+(−2.51e14−4.35e14i)T2 |
| 47 | 1+5.82e7iT−1.11e15T2 |
| 53 | 1+2.43e7T+3.29e15T2 |
| 59 | 1+(−1.40e8−8.09e7i)T+(4.33e15+7.50e15i)T2 |
| 61 | 1+(4.21e7−7.30e7i)T+(−5.84e15−1.01e16i)T2 |
| 67 | 1+(4.23e7−2.44e7i)T+(1.36e16−2.35e16i)T2 |
| 71 | 1+(2.87e7+1.65e7i)T+(2.29e16+3.97e16i)T2 |
| 73 | 1+2.22e8iT−5.88e16T2 |
| 79 | 1−1.28e7T+1.19e17T2 |
| 83 | 1−1.32e8iT−1.86e17T2 |
| 89 | 1+(−5.06e8+2.92e8i)T+(1.75e17−3.03e17i)T2 |
| 97 | 1+(8.94e8+5.16e8i)T+(3.80e17+6.58e17i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.44296895297923404621444827764, −15.36316546446503783258356104732, −14.81193958579167265795561898971, −13.08388232536301038383201091948, −12.10241278166952661636503337705, −10.47203279502703026251932058059, −8.644288618099399098112673100658, −5.20264544616574041824251221733, −4.26227499782834824633665324755, −2.15122543136600175696083174013,
2.63263028186040645115975940662, 4.81389102714685375285711352454, 6.90057935616463042835917462995, 7.72197537833508371550077393113, 10.96523936435327421845760502993, 12.75111558363915598668991043421, 14.06541599285912086404244099890, 14.45910062377295646349955358236, 16.03497371408126738152287761486, 17.80862464104291171783907509784