L(s) = 1 | + (−0.5 + 1.86i)2-s + (−1.36 − 2.36i)3-s + (0.232 + 0.133i)4-s + (−4.36 − 4.36i)5-s + (5.09 − 1.36i)6-s + (2.26 + 8.46i)7-s + (−5.83 + 5.83i)8-s + (0.767 − 1.33i)9-s + (10.3 − 5.96i)10-s + (6.19 + 1.66i)11-s − 0.732i·12-s + (−6.5 − 11.2i)13-s − 16.9·14-s + (−4.36 + 16.2i)15-s + (−7.42 − 12.8i)16-s + (9.99 + 5.76i)17-s + ⋯ |
L(s) = 1 | + (−0.250 + 0.933i)2-s + (−0.455 − 0.788i)3-s + (0.0580 + 0.0334i)4-s + (−0.873 − 0.873i)5-s + (0.849 − 0.227i)6-s + (0.323 + 1.20i)7-s + (−0.728 + 0.728i)8-s + (0.0853 − 0.147i)9-s + (1.03 − 0.596i)10-s + (0.563 + 0.150i)11-s − 0.0610i·12-s + (−0.5 − 0.866i)13-s − 1.20·14-s + (−0.291 + 1.08i)15-s + (−0.464 − 0.804i)16-s + (0.587 + 0.339i)17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(0.846−0.533i)Λ(3−s)
Λ(s)=(=(13s/2ΓC(s+1)L(s)(0.846−0.533i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
0.846−0.533i
|
Analytic conductor: |
0.354224 |
Root analytic conductor: |
0.595167 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :1), 0.846−0.533i)
|
Particular Values
L(23) |
≈ |
0.586286+0.169291i |
L(21) |
≈ |
0.586286+0.169291i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(6.5+11.2i)T |
good | 2 | 1+(0.5−1.86i)T+(−3.46−2i)T2 |
| 3 | 1+(1.36+2.36i)T+(−4.5+7.79i)T2 |
| 5 | 1+(4.36+4.36i)T+25iT2 |
| 7 | 1+(−2.26−8.46i)T+(−42.4+24.5i)T2 |
| 11 | 1+(−6.19−1.66i)T+(104.+60.5i)T2 |
| 17 | 1+(−9.99−5.76i)T+(144.5+250.i)T2 |
| 19 | 1+(−3.36+0.901i)T+(312.−180.5i)T2 |
| 23 | 1+(8.49−4.90i)T+(264.5−458.i)T2 |
| 29 | 1+(−5.69−9.86i)T+(−420.5+728.i)T2 |
| 31 | 1+(−1.92−1.92i)T+961iT2 |
| 37 | 1+(42.1+11.2i)T+(1.18e3+684.5i)T2 |
| 41 | 1+(−5.08+18.9i)T+(−1.45e3−840.5i)T2 |
| 43 | 1+(−45−25.9i)T+(924.5+1.60e3i)T2 |
| 47 | 1+(−0.320+0.320i)T−2.20e3iT2 |
| 53 | 1−78.7T+2.80e3T2 |
| 59 | 1+(−10.9−40.9i)T+(−3.01e3+1.74e3i)T2 |
| 61 | 1+(49.1−85.1i)T+(−1.86e3−3.22e3i)T2 |
| 67 | 1+(−19.9+74.5i)T+(−3.88e3−2.24e3i)T2 |
| 71 | 1+(31.0−8.31i)T+(4.36e3−2.52e3i)T2 |
| 73 | 1+(−48.2+48.2i)T−5.32e3iT2 |
| 79 | 1+82.7T+6.24e3T2 |
| 83 | 1+(69.5+69.5i)T+6.88e3iT2 |
| 89 | 1+(31.8+8.52i)T+(6.85e3+3.96e3i)T2 |
| 97 | 1+(−74.8+20.0i)T+(8.14e3−4.70e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.69946131770991524875045309811, −18.20982450485576413706454723373, −17.22051251081396437134079460275, −15.88555550706980427605586348646, −14.92450749565529743467736844708, −12.35508748671146947038322297182, −11.94096394180814851765994738485, −8.748529320555201240166277877670, −7.49426845231199612039305488387, −5.69553781794938833798720680035,
3.95683416420677932391690554448, 7.14798786949140281813477201047, 9.949203577202307198335670126866, 10.93174628761151014090250123475, 11.79909410586806601335509550978, 14.23948615269701998674708152208, 15.69349632537767292893142502756, 16.93927975372165790455416367734, 18.79531553297321548176777089468, 19.67380957328236826127553915476