L(s) = 1 | + 36.6i·2-s + 126.·3-s − 829.·4-s + 2.09e3i·5-s + 4.65e3i·6-s − 3.35e3i·7-s − 1.16e4i·8-s − 3.55e3·9-s − 7.67e4·10-s − 3.02e4i·11-s − 1.05e5·12-s + (1.02e5 + 9.78e3i)13-s + 1.22e5·14-s + 2.66e5i·15-s + 847.·16-s + 1.66e4·17-s + ⋯ |
L(s) = 1 | + 1.61i·2-s + 0.905·3-s − 1.61·4-s + 1.49i·5-s + 1.46i·6-s − 0.527i·7-s − 1.00i·8-s − 0.180·9-s − 2.42·10-s − 0.621i·11-s − 1.46·12-s + (0.995 + 0.0949i)13-s + 0.854·14-s + 1.35i·15-s + 0.00323·16-s + 0.0484·17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(−0.995−0.0949i)Λ(10−s)
Λ(s)=(=(13s/2ΓC(s+9/2)L(s)(−0.995−0.0949i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
−0.995−0.0949i
|
Analytic conductor: |
6.69546 |
Root analytic conductor: |
2.58755 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(12,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :9/2), −0.995−0.0949i)
|
Particular Values
L(5) |
≈ |
0.0890652+1.87087i |
L(21) |
≈ |
0.0890652+1.87087i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−1.02e5−9.78e3i)T |
good | 2 | 1−36.6iT−512T2 |
| 3 | 1−126.T+1.96e4T2 |
| 5 | 1−2.09e3iT−1.95e6T2 |
| 7 | 1+3.35e3iT−4.03e7T2 |
| 11 | 1+3.02e4iT−2.35e9T2 |
| 17 | 1−1.66e4T+1.18e11T2 |
| 19 | 1−9.72e5iT−3.22e11T2 |
| 23 | 1−2.50e6T+1.80e12T2 |
| 29 | 1−4.39e6T+1.45e13T2 |
| 31 | 1−3.88e6iT−2.64e13T2 |
| 37 | 1+8.44e6iT−1.29e14T2 |
| 41 | 1+9.82e6iT−3.27e14T2 |
| 43 | 1−1.24e7T+5.02e14T2 |
| 47 | 1+2.73e7iT−1.11e15T2 |
| 53 | 1+4.22e7T+3.29e15T2 |
| 59 | 1−2.26e7iT−8.66e15T2 |
| 61 | 1+1.70e8T+1.16e16T2 |
| 67 | 1+4.12e5iT−2.72e16T2 |
| 71 | 1+2.40e8iT−4.58e16T2 |
| 73 | 1+3.37e8iT−5.88e16T2 |
| 79 | 1+1.13e8T+1.19e17T2 |
| 83 | 1−5.09e8iT−1.86e17T2 |
| 89 | 1+4.18e8iT−3.50e17T2 |
| 97 | 1+1.22e9iT−7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.20981248412863687796239164049, −16.75220495744961901038050847954, −15.36239809862658829406034735837, −14.32831984120264013039052101723, −13.80322834457947577244573513850, −10.76808135582743352297690246005, −8.711348364633175660673856509886, −7.43870275949815888705418467051, −6.13466625895213349378168069059, −3.37158820459940897695569841675,
1.05428497206120721649969871003, 2.77312506341140626402271146247, 4.68399068777890171775510588567, 8.668856699017719384478027268124, 9.303192833167714712302811850852, 11.33543253218959589326696697561, 12.71880655198529044444180864860, 13.50897546040615358085908378375, 15.49382792723207697686115102905, 17.41689722508960859283882390018