L(s) = 1 | + 36.6i·2-s + 126.·3-s − 829.·4-s + 2.09e3i·5-s + 4.65e3i·6-s − 3.35e3i·7-s − 1.16e4i·8-s − 3.55e3·9-s − 7.67e4·10-s − 3.02e4i·11-s − 1.05e5·12-s + (1.02e5 + 9.78e3i)13-s + 1.22e5·14-s + 2.66e5i·15-s + 847.·16-s + 1.66e4·17-s + ⋯ |
L(s) = 1 | + 1.61i·2-s + 0.905·3-s − 1.61·4-s + 1.49i·5-s + 1.46i·6-s − 0.527i·7-s − 1.00i·8-s − 0.180·9-s − 2.42·10-s − 0.621i·11-s − 1.46·12-s + (0.995 + 0.0949i)13-s + 0.854·14-s + 1.35i·15-s + 0.00323·16-s + 0.0484·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.995 - 0.0949i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 13 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (-0.995 - 0.0949i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(0.0890652 + 1.87087i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0890652 + 1.87087i\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 13 | \( 1 + (-1.02e5 - 9.78e3i)T \) |
good | 2 | \( 1 - 36.6iT - 512T^{2} \) |
| 3 | \( 1 - 126.T + 1.96e4T^{2} \) |
| 5 | \( 1 - 2.09e3iT - 1.95e6T^{2} \) |
| 7 | \( 1 + 3.35e3iT - 4.03e7T^{2} \) |
| 11 | \( 1 + 3.02e4iT - 2.35e9T^{2} \) |
| 17 | \( 1 - 1.66e4T + 1.18e11T^{2} \) |
| 19 | \( 1 - 9.72e5iT - 3.22e11T^{2} \) |
| 23 | \( 1 - 2.50e6T + 1.80e12T^{2} \) |
| 29 | \( 1 - 4.39e6T + 1.45e13T^{2} \) |
| 31 | \( 1 - 3.88e6iT - 2.64e13T^{2} \) |
| 37 | \( 1 + 8.44e6iT - 1.29e14T^{2} \) |
| 41 | \( 1 + 9.82e6iT - 3.27e14T^{2} \) |
| 43 | \( 1 - 1.24e7T + 5.02e14T^{2} \) |
| 47 | \( 1 + 2.73e7iT - 1.11e15T^{2} \) |
| 53 | \( 1 + 4.22e7T + 3.29e15T^{2} \) |
| 59 | \( 1 - 2.26e7iT - 8.66e15T^{2} \) |
| 61 | \( 1 + 1.70e8T + 1.16e16T^{2} \) |
| 67 | \( 1 + 4.12e5iT - 2.72e16T^{2} \) |
| 71 | \( 1 + 2.40e8iT - 4.58e16T^{2} \) |
| 73 | \( 1 + 3.37e8iT - 5.88e16T^{2} \) |
| 79 | \( 1 + 1.13e8T + 1.19e17T^{2} \) |
| 83 | \( 1 - 5.09e8iT - 1.86e17T^{2} \) |
| 89 | \( 1 + 4.18e8iT - 3.50e17T^{2} \) |
| 97 | \( 1 + 1.22e9iT - 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.20981248412863687796239164049, −16.75220495744961901038050847954, −15.36239809862658829406034735837, −14.32831984120264013039052101723, −13.80322834457947577244573513850, −10.76808135582743352297690246005, −8.711348364633175660673856509886, −7.43870275949815888705418467051, −6.13466625895213349378168069059, −3.37158820459940897695569841675,
1.05428497206120721649969871003, 2.77312506341140626402271146247, 4.68399068777890171775510588567, 8.668856699017719384478027268124, 9.303192833167714712302811850852, 11.33543253218959589326696697561, 12.71880655198529044444180864860, 13.50897546040615358085908378375, 15.49382792723207697686115102905, 17.41689722508960859283882390018