L(s) = 1 | + (−2 − 3.46i)2-s + (−1 − 1.73i)3-s + (−3.99 + 6.92i)4-s + 17·5-s + (−3.99 + 6.92i)6-s + (−10 + 17.3i)7-s + (11.5 − 19.9i)9-s + (−34 − 58.8i)10-s + (16 + 27.7i)11-s + 15.9·12-s + (−45.5 + 11.2i)13-s + 80·14-s + (−17 − 29.4i)15-s + (31.9 + 55.4i)16-s + (6.5 − 11.2i)17-s − 92·18-s + ⋯ |
L(s) = 1 | + (−0.707 − 1.22i)2-s + (−0.192 − 0.333i)3-s + (−0.499 + 0.866i)4-s + 1.52·5-s + (−0.272 + 0.471i)6-s + (−0.539 + 0.935i)7-s + (0.425 − 0.737i)9-s + (−1.07 − 1.86i)10-s + (0.438 + 0.759i)11-s + 0.384·12-s + (−0.970 + 0.240i)13-s + 1.52·14-s + (−0.292 − 0.506i)15-s + (0.499 + 0.866i)16-s + (0.0927 − 0.160i)17-s − 1.20·18-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(−0.0128+0.999i)Λ(4−s)
Λ(s)=(=(13s/2ΓC(s+3/2)L(s)(−0.0128+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
−0.0128+0.999i
|
Analytic conductor: |
0.767024 |
Root analytic conductor: |
0.875799 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :3/2), −0.0128+0.999i)
|
Particular Values
L(2) |
≈ |
0.523757−0.530517i |
L(21) |
≈ |
0.523757−0.530517i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(45.5−11.2i)T |
good | 2 | 1+(2+3.46i)T+(−4+6.92i)T2 |
| 3 | 1+(1+1.73i)T+(−13.5+23.3i)T2 |
| 5 | 1−17T+125T2 |
| 7 | 1+(10−17.3i)T+(−171.5−297.i)T2 |
| 11 | 1+(−16−27.7i)T+(−665.5+1.15e3i)T2 |
| 17 | 1+(−6.5+11.2i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(15−25.9i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(39+67.5i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(98.5+170.i)T+(−1.21e4+2.11e4i)T2 |
| 31 | 1+74T+2.97e4T2 |
| 37 | 1+(−113.5−196.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1+(−82.5−142.i)T+(−3.44e4+5.96e4i)T2 |
| 43 | 1+(−78+135.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+162T+1.03e5T2 |
| 53 | 1−93T+1.48e5T2 |
| 59 | 1+(−432+748.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(72.5−125.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(431+746.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+(327−566.i)T+(−1.78e5−3.09e5i)T2 |
| 73 | 1−215T+3.89e5T2 |
| 79 | 1+76T+4.93e5T2 |
| 83 | 1−628T+5.71e5T2 |
| 89 | 1+(−133−230.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1+(119−206.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.96574936302645102981319399967, −18.09254921048204300184648378740, −17.18157593915280664305678696405, −14.86177173843490193203706774909, −12.86927017481398855429709189815, −11.98747629761118495658865541461, −9.887502046509861969066788993308, −9.370262842225942902263192995265, −6.23548438188844542950081286302, −2.13695132026179111184784576896,
5.68016097036963500634962429051, 7.23055185159361865807648753128, 9.320592364977432349566439380192, 10.38286862212767469402173284607, 13.26329777588852698611397520397, 14.48917747574907568308876279142, 16.31112134567384953240925394430, 16.92124724524974774626837997417, 17.90997346769399799405801989332, 19.48087388305308515481482611374