L(s) = 1 | + (−19.5 − 33.8i)2-s + (−36.0 − 62.4i)3-s + (−509. + 882. i)4-s − 1.00e3·5-s + (−1.41e3 + 2.44e3i)6-s + (190. − 329. i)7-s + 1.98e4·8-s + (7.23e3 − 1.25e4i)9-s + (1.97e4 + 3.41e4i)10-s + (3.11e4 + 5.39e4i)11-s + 7.34e4·12-s + (−8.48e4 − 5.83e4i)13-s − 1.48e4·14-s + (3.63e4 + 6.29e4i)15-s + (−1.26e5 − 2.19e5i)16-s + (−2.08e5 + 3.61e5i)17-s + ⋯ |
L(s) = 1 | + (−0.864 − 1.49i)2-s + (−0.257 − 0.445i)3-s + (−0.994 + 1.72i)4-s − 0.720·5-s + (−0.444 + 0.770i)6-s + (0.0299 − 0.0518i)7-s + 1.71·8-s + (0.367 − 0.636i)9-s + (0.623 + 1.07i)10-s + (0.641 + 1.11i)11-s + 1.02·12-s + (−0.823 − 0.566i)13-s − 0.103·14-s + (0.185 + 0.321i)15-s + (−0.483 − 0.838i)16-s + (−0.605 + 1.04i)17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(0.756−0.653i)Λ(10−s)
Λ(s)=(=(13s/2ΓC(s+9/2)L(s)(0.756−0.653i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
0.756−0.653i
|
Analytic conductor: |
6.69546 |
Root analytic conductor: |
2.58755 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :9/2), 0.756−0.653i)
|
Particular Values
L(5) |
≈ |
0.149606+0.0556838i |
L(21) |
≈ |
0.149606+0.0556838i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(8.48e4+5.83e4i)T |
good | 2 | 1+(19.5+33.8i)T+(−256+443.i)T2 |
| 3 | 1+(36.0+62.4i)T+(−9.84e3+1.70e4i)T2 |
| 5 | 1+1.00e3T+1.95e6T2 |
| 7 | 1+(−190.+329.i)T+(−2.01e7−3.49e7i)T2 |
| 11 | 1+(−3.11e4−5.39e4i)T+(−1.17e9+2.04e9i)T2 |
| 17 | 1+(2.08e5−3.61e5i)T+(−5.92e10−1.02e11i)T2 |
| 19 | 1+(1.18e5−2.05e5i)T+(−1.61e11−2.79e11i)T2 |
| 23 | 1+(−5.86e5−1.01e6i)T+(−9.00e11+1.55e12i)T2 |
| 29 | 1+(−2.97e6−5.15e6i)T+(−7.25e12+1.25e13i)T2 |
| 31 | 1+5.96e6T+2.64e13T2 |
| 37 | 1+(8.42e6+1.45e7i)T+(−6.49e13+1.12e14i)T2 |
| 41 | 1+(6.53e6+1.13e7i)T+(−1.63e14+2.83e14i)T2 |
| 43 | 1+(−9.45e6+1.63e7i)T+(−2.51e14−4.35e14i)T2 |
| 47 | 1+4.10e7T+1.11e15T2 |
| 53 | 1+9.90e6T+3.29e15T2 |
| 59 | 1+(4.79e7−8.30e7i)T+(−4.33e15−7.50e15i)T2 |
| 61 | 1+(1.00e8−1.74e8i)T+(−5.84e15−1.01e16i)T2 |
| 67 | 1+(−2.73e6−4.73e6i)T+(−1.36e16+2.35e16i)T2 |
| 71 | 1+(−1.64e8+2.85e8i)T+(−2.29e16−3.97e16i)T2 |
| 73 | 1−1.75e8T+5.88e16T2 |
| 79 | 1+2.17e7T+1.19e17T2 |
| 83 | 1+1.59e7T+1.86e17T2 |
| 89 | 1+(2.38e8+4.12e8i)T+(−1.75e17+3.03e17i)T2 |
| 97 | 1+(3.12e8−5.41e8i)T+(−3.80e17−6.58e17i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−18.01837970894455201742489738300, −17.28929903049588589287654530510, −15.11491872280691135397491079404, −12.63544970288734926812134623887, −12.09816551508132502386464926854, −10.59415006618634737377722912041, −9.160991657259376740167531768935, −7.37876536259149094380643403645, −3.84218785750404691704185362770, −1.62599414104385827620483166558,
0.12456454890181482203260916588, 4.79885007841664451270097154684, 6.71487300838998607594956680918, 8.157228965365230069572082694520, 9.578217167163690641342343011357, 11.36234125638855753635771576048, 13.93495958730859788240508100918, 15.34487941882152089174964484724, 16.27264500832589703228054269683, 17.07128310954985086954591974874