L(s) = 1 | + (1.5 + 0.866i)2-s + (−1 + 1.73i)3-s + (−2.5 − 4.33i)4-s − 1.73i·5-s + (−3 + 1.73i)6-s + (−12 + 6.92i)7-s − 22.5i·8-s + (11.5 + 19.9i)9-s + (1.49 − 2.59i)10-s + (12 + 6.92i)11-s + 10·12-s + (45.5 + 11.2i)13-s − 24·14-s + (2.99 + 1.73i)15-s + (−0.500 + 0.866i)16-s + (−58.5 − 101. i)17-s + ⋯ |
L(s) = 1 | + (0.530 + 0.306i)2-s + (−0.192 + 0.333i)3-s + (−0.312 − 0.541i)4-s − 0.154i·5-s + (−0.204 + 0.117i)6-s + (−0.647 + 0.374i)7-s − 0.995i·8-s + (0.425 + 0.737i)9-s + (0.0474 − 0.0821i)10-s + (0.328 + 0.189i)11-s + 0.240·12-s + (0.970 + 0.240i)13-s − 0.458·14-s + (0.0516 + 0.0298i)15-s + (−0.00781 + 0.0135i)16-s + (−0.834 − 1.44i)17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(0.957−0.289i)Λ(4−s)
Λ(s)=(=(13s/2ΓC(s+3/2)L(s)(0.957−0.289i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
0.957−0.289i
|
Analytic conductor: |
0.767024 |
Root analytic conductor: |
0.875799 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(4,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :3/2), 0.957−0.289i)
|
Particular Values
L(2) |
≈ |
1.04076+0.154029i |
L(21) |
≈ |
1.04076+0.154029i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−45.5−11.2i)T |
good | 2 | 1+(−1.5−0.866i)T+(4+6.92i)T2 |
| 3 | 1+(1−1.73i)T+(−13.5−23.3i)T2 |
| 5 | 1+1.73iT−125T2 |
| 7 | 1+(12−6.92i)T+(171.5−297.i)T2 |
| 11 | 1+(−12−6.92i)T+(665.5+1.15e3i)T2 |
| 17 | 1+(58.5+101.i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(99−57.1i)T+(3.42e3−5.94e3i)T2 |
| 23 | 1+(−39+67.5i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(−70.5+122.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1−155.iT−2.97e4T2 |
| 37 | 1+(124.5+71.8i)T+(2.53e4+4.38e4i)T2 |
| 41 | 1+(−235.5−135.i)T+(3.44e4+5.96e4i)T2 |
| 43 | 1+(52+90.0i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1−301.iT−1.03e5T2 |
| 53 | 1−93T+1.48e5T2 |
| 59 | 1+(246−142.i)T+(1.02e5−1.77e5i)T2 |
| 61 | 1+(72.5+125.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(681+393.i)T+(1.50e5+2.60e5i)T2 |
| 71 | 1+(−915+528.i)T+(1.78e5−3.09e5i)T2 |
| 73 | 1−458.iT−3.89e5T2 |
| 79 | 1−1.27e3T+4.93e5T2 |
| 83 | 1+789.iT−5.71e5T2 |
| 89 | 1+(846+488.i)T+(3.52e5+6.10e5i)T2 |
| 97 | 1+(−174+100.i)T+(4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.38787102262126019114903646140, −18.38745997698692694960953777081, −16.39943340649917061283650070128, −15.52482972107435867423016421077, −13.97966085743690877963176414599, −12.76776063570069867432355301239, −10.67577508221439449057168113284, −9.145887368596140060017474345389, −6.44642247865807450236577898176, −4.61610486448213139359214098709,
3.82089278567738814603334571403, 6.55954385010205411763053889022, 8.751724509032825632034212394218, 10.94872441274391514249844106255, 12.62060054542997103347677841983, 13.36238127724265163184551261728, 15.14413292162704069430548515255, 16.92096272912926110469252774589, 18.00079251783951060487176370950, 19.50752909096018256887140678710