L(s) = 1 | + (0.581 + 0.581i)2-s − 4.16·3-s − 3.32i·4-s + (3.58 + 3.58i)5-s + (−2.41 − 2.41i)6-s + (−4.58 + 4.58i)7-s + (4.25 − 4.25i)8-s + 8.32·9-s + 4.16i·10-s + (5.32 − 5.32i)11-s + 13.8i·12-s + (−5.90 − 11.5i)13-s − 5.32·14-s + (−14.9 − 14.9i)15-s − 8.35·16-s + 21.9i·17-s + ⋯ |
L(s) = 1 | + (0.290 + 0.290i)2-s − 1.38·3-s − 0.831i·4-s + (0.716 + 0.716i)5-s + (−0.403 − 0.403i)6-s + (−0.654 + 0.654i)7-s + (0.532 − 0.532i)8-s + 0.924·9-s + 0.416i·10-s + (0.484 − 0.484i)11-s + 1.15i·12-s + (−0.454 − 0.890i)13-s − 0.380·14-s + (−0.993 − 0.993i)15-s − 0.521·16-s + 1.29i·17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(0.984−0.176i)Λ(3−s)
Λ(s)=(=(13s/2ΓC(s+1)L(s)(0.984−0.176i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
0.984−0.176i
|
Analytic conductor: |
0.354224 |
Root analytic conductor: |
0.595167 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(8,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :1), 0.984−0.176i)
|
Particular Values
L(23) |
≈ |
0.648809+0.0577555i |
L(21) |
≈ |
0.648809+0.0577555i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(5.90+11.5i)T |
good | 2 | 1+(−0.581−0.581i)T+4iT2 |
| 3 | 1+4.16T+9T2 |
| 5 | 1+(−3.58−3.58i)T+25iT2 |
| 7 | 1+(4.58−4.58i)T−49iT2 |
| 11 | 1+(−5.32+5.32i)T−121iT2 |
| 17 | 1−21.9iT−289T2 |
| 19 | 1+(−3.16−3.16i)T+361iT2 |
| 23 | 1−8.51iT−529T2 |
| 29 | 1+5.81T+841T2 |
| 31 | 1+(−0.513−0.513i)T+961iT2 |
| 37 | 1+(−24.2+24.2i)T−1.36e3iT2 |
| 41 | 1+(−4.83−4.83i)T+1.68e3iT2 |
| 43 | 1+30.4iT−1.84e3T2 |
| 47 | 1+(37.3−37.3i)T−2.20e3iT2 |
| 53 | 1+35.8T+2.80e3T2 |
| 59 | 1+(−58.2+58.2i)T−3.48e3iT2 |
| 61 | 1+80.3T+3.72e3T2 |
| 67 | 1+(−39.0−39.0i)T+4.48e3iT2 |
| 71 | 1+(−91.5−91.5i)T+5.04e3iT2 |
| 73 | 1+(−31.6+31.6i)T−5.32e3iT2 |
| 79 | 1+18.7T+6.24e3T2 |
| 83 | 1+(44.6+44.6i)T+6.88e3iT2 |
| 89 | 1+(−8.89+8.89i)T−7.92e3iT2 |
| 97 | 1+(121.+121.i)T+9.40e3iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.49695197618202841717339595129, −18.33323662465042175742064478334, −17.18608481629438217751192576964, −15.76229596423075253929326431430, −14.45109489363855657383888504907, −12.73477724760375199072324025869, −10.99395777799112031275258853299, −9.896974242426991948391952809843, −6.38261627920717730506117029383, −5.65990377670370487912622172668,
4.77450417013775926355845063463, 6.85874272103586218025205582972, 9.563996724071608323299871578343, 11.43954033197981425354098322200, 12.48767843173433937554344724520, 13.67826964445310405211522983516, 16.51199170187262004701105122947, 16.81981330681481747967995918196, 17.95968323919624174885987371043, 20.07705563370172261207446866316