L(s) = 1 | + (0.219 − 0.379i)2-s + (1.84 − 3.19i)3-s + (3.90 + 6.76i)4-s − 17.8·5-s + (−0.807 − 1.39i)6-s + (−2.71 − 4.70i)7-s + 6.93·8-s + (6.71 + 11.6i)9-s + (−3.90 + 6.76i)10-s + (11.2 − 19.4i)11-s + 28.7·12-s + (21.9 − 41.4i)13-s − 2.38·14-s + (−32.8 + 56.8i)15-s + (−29.7 + 51.4i)16-s + (−33.9 − 58.8i)17-s + ⋯ |
L(s) = 1 | + (0.0775 − 0.134i)2-s + (0.354 − 0.614i)3-s + (0.487 + 0.845i)4-s − 1.59·5-s + (−0.0549 − 0.0951i)6-s + (−0.146 − 0.254i)7-s + 0.306·8-s + (0.248 + 0.430i)9-s + (−0.123 + 0.213i)10-s + (0.307 − 0.532i)11-s + 0.692·12-s + (0.468 − 0.883i)13-s − 0.0455·14-s + (−0.564 + 0.978i)15-s + (−0.464 + 0.804i)16-s + (−0.484 − 0.839i)17-s + ⋯ |
Λ(s)=(=(13s/2ΓC(s)L(s)(0.973+0.230i)Λ(4−s)
Λ(s)=(=(13s/2ΓC(s+3/2)L(s)(0.973+0.230i)Λ(1−s)
Degree: |
2 |
Conductor: |
13
|
Sign: |
0.973+0.230i
|
Analytic conductor: |
0.767024 |
Root analytic conductor: |
0.875799 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ13(9,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 13, ( :3/2), 0.973+0.230i)
|
Particular Values
L(2) |
≈ |
0.982027−0.114691i |
L(21) |
≈ |
0.982027−0.114691i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 13 | 1+(−21.9+41.4i)T |
good | 2 | 1+(−0.219+0.379i)T+(−4−6.92i)T2 |
| 3 | 1+(−1.84+3.19i)T+(−13.5−23.3i)T2 |
| 5 | 1+17.8T+125T2 |
| 7 | 1+(2.71+4.70i)T+(−171.5+297.i)T2 |
| 11 | 1+(−11.2+19.4i)T+(−665.5−1.15e3i)T2 |
| 17 | 1+(33.9+58.8i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(−40.4−69.9i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(70.2−121.i)T+(−6.08e3−1.05e4i)T2 |
| 29 | 1+(−53.3+92.3i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+276.T+2.97e4T2 |
| 37 | 1+(−2.14+3.71i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+(113.−197.i)T+(−3.44e4−5.96e4i)T2 |
| 43 | 1+(13.7+23.8i)T+(−3.97e4+6.88e4i)T2 |
| 47 | 1−318.T+1.03e5T2 |
| 53 | 1+67.6T+1.48e5T2 |
| 59 | 1+(−145.−252.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(331.+574.i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−212.+368.i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1+(−76.4−132.i)T+(−1.78e5+3.09e5i)T2 |
| 73 | 1−117.T+3.89e5T2 |
| 79 | 1−202.T+4.93e5T2 |
| 83 | 1−336.T+5.71e5T2 |
| 89 | 1+(359.−621.i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1+(379.+657.i)T+(−4.56e5+7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.67780105452462756970465910990, −18.35101931534678645970805260435, −16.44675986116577346436403731362, −15.60674160626015570317270278982, −13.55961242981874110454866407054, −12.24656201119802978584149472660, −11.12718488914698104803801456386, −8.162302933922337311779364217199, −7.34663469630280678944139989589, −3.58625571942394858965526178874,
4.19022483144951431422246083571, 6.90403086611684217568404125648, 9.009732338948342568151131608751, 10.80163656029455800316775363706, 12.14658068558979807099510010550, 14.55847462133591598399845749321, 15.44544303217164622985200394439, 16.18066007274649173202413446868, 18.56744771117491312836050583330, 19.74589105824024445259505976782